Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming

In this paper, we introduce a new stochastic approximation type algorithm, namely, the randomized stochastic gradient (RSG) method, for solving an important class of nonlinear (possibly nonconvex) stochastic programming problems. We establish the complexity of this method for computing an approximat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on optimization Ročník 23; číslo 4; s. 2341 - 2368
Hlavní autori: Ghadimi, Saeed, Lan, Guanghui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Predmet:
ISSN:1052-6234, 1095-7189
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we introduce a new stochastic approximation type algorithm, namely, the randomized stochastic gradient (RSG) method, for solving an important class of nonlinear (possibly nonconvex) stochastic programming problems. We establish the complexity of this method for computing an approximate stationary point of a nonlinear programming problem. We also show that this method possesses a nearly optimal rate of convergence if the problem is convex. We discuss a variant of the algorithm which consists of applying a postoptimization phase to evaluate a short list of solutions generated by several independent runs of the RSG method, and we show that such modification allows us to improve significantly the large-deviation properties of the algorithm. These methods are then specialized for solving a class of simulation-based optimization problems in which only stochastic zeroth-order information is available. [PUBLICATION ABSTRACT]
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1052-6234
1095-7189
DOI:10.1137/120880811