Prediction of Machine Health Condition Using Neuro-Fuzzy and Bayesian Algorithms

This paper proposes a novel approach for machine health condition prognosis based on neuro-fuzzy systems (NFSs) and Bayesian algorithms. The NFS, after training with machine condition data, is employed as a prognostic model to forecast the evolution of the machine fault state with time. An online mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 61; H. 2; S. 297 - 306
Hauptverfasser: Chaochao Chen, Bin Zhang, Vachtsevanos, G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel approach for machine health condition prognosis based on neuro-fuzzy systems (NFSs) and Bayesian algorithms. The NFS, after training with machine condition data, is employed as a prognostic model to forecast the evolution of the machine fault state with time. An online model update scheme is developed on the basis of the probability density function (PDF) of the NFS residuals between the actual and predicted condition data. Bayesian estimation algorithms adopt the model's predicted data as prior information in combination with online measurements to update the degree of belief in the forecasting estimations. In order to simplify the implementation of the proposed approach, a recursive Bayesian algorithm called particle filtering is utilized to calculate in real time a posterior PDF by a set of random samples (or particles) with associated weights. When new data become available, the weights of all particles are updated, and then, predictions are carried out, which form the PDF of the predicted estimations. The developed method is evaluated via two experimental cases-a cracked carrier plate and a faulty bearing. The prediction performance is compared with three prevalent machine condition predictors-recurrent neural networks, NFSs, and recurrent NFSs. The results demonstrate that the proposed approach can predict machine conditions more accurately.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2011.2169182