SPARLS: The Sparse RLS Algorithm

We develop a recursive L 1 -regularized least squares (SPARLS) algorithm for the estimation of a sparse tap-weight vector in the adaptive filtering setting. The SPARLS algorithm exploits noisy observations of the tap-weight vector output stream and produces its estimate using an expectation-maximiza...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 58; číslo 8; s. 4013 - 4025
Hlavní autoři: Babadi, B, Kalouptsidis, N, Tarokh, V
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop a recursive L 1 -regularized least squares (SPARLS) algorithm for the estimation of a sparse tap-weight vector in the adaptive filtering setting. The SPARLS algorithm exploits noisy observations of the tap-weight vector output stream and produces its estimate using an expectation-maximization type algorithm. We prove the convergence of the SPARLS algorithm to a near-optimal estimate in a stationary environment and present analytical results for the steady state error. Simulation studies in the context of channel estimation, employing multipath wireless channels, show that the SPARLS algorithm has significant improvement over the conventional widely used recursive least squares (RLS) algorithm in terms of mean squared error (MSE). Moreover, these simulation studies suggest that the SPARLS algorithm (with slight modifications) can operate with lower computational requirements than the RLS algorithm, when applied to tap-weight vectors with fixed support.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2010.2048103