A Novel Broad Learning System Based Leakage Detection and Universal Localization Method for Pipeline Networks
The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection and localization of pipeline networks in this paper. First, the detection algorithm based on the broad learning system (BLS) is used to dist...
Saved in:
| Published in: | IEEE access Vol. 7; pp. 42343 - 42353 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection and localization of pipeline networks in this paper. First, the detection algorithm based on the broad learning system (BLS) is used to distinguish abnormities under large-scale pipeline network environments. During the process, the varied BLS models result in indeterminate performance and fast ergodic structure search is executed via adaptive mutation particle swarm algorithm (APSO) to generate an appropriate structure, succinct parameters, speedability, and accuracy. And manual features are implanted into the BLS feature layer to targetedly improve performance for complex pipeline network signals. Second, based on the detection results, a universal Dijkstra-based applicable localization method is proposed for diverse topological pipeline structures, including mesh-form networks, which have fewer sensors than anchors. The synchronous approximation is adopted to shun local minimum, and the shrinkage of search domain economizes time. Revised BLS was contrasted with several networks trained by real pipeline data and the system was integrated into SCADA and applied on an operational large-scale pipeline network successfully. |
|---|---|
| AbstractList | The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection and localization of pipeline networks in this paper. First, the detection algorithm based on the broad learning system (BLS) is used to distinguish abnormities under large-scale pipeline network environments. During the process, the varied BLS models result in indeterminate performance and fast ergodic structure search is executed via adaptive mutation particle swarm algorithm (APSO) to generate an appropriate structure, succinct parameters, speedability, and accuracy. And manual features are implanted into the BLS feature layer to targetedly improve performance for complex pipeline network signals. Second, based on the detection results, a universal Dijkstra-based applicable localization method is proposed for diverse topological pipeline structures, including mesh-form networks, which have fewer sensors than anchors. The synchronous approximation is adopted to shun local minimum, and the shrinkage of search domain economizes time. Revised BLS was contrasted with several networks trained by real pipeline data and the system was integrated into SCADA and applied on an operational large-scale pipeline network successfully. |
| Author | Ma, Dazhong Sun, Qiuye Wang, Junda Hu, Xuguang |
| Author_xml | – sequence: 1 givenname: Dazhong orcidid: 0000-0001-7293-8522 surname: Ma fullname: Ma, Dazhong email: madazhong@ise.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Junda surname: Wang fullname: Wang, Junda organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 3 givenname: Qiuye orcidid: 0000-0001-8801-0884 surname: Sun fullname: Sun, Qiuye organization: College of Information Science and Engineering, Northeastern University, Shenyang, China – sequence: 4 givenname: Xuguang surname: Hu fullname: Hu, Xuguang organization: College of Information Science and Engineering, Northeastern University, Shenyang, China |
| BookMark | eNp9kU9vEzEQxS1UJErpJ-jFEucE_921j2looVJakELPlteeDU43drDdovLp2WZLhTgwF4-e5_c09nuLjmKKgNAZJXNKif6wWC4v1us5I1TPmSaKUPkKHTPa6BmXvDn6q3-DTkvZkrHUKMn2GO0W-CY9wIDPc7Ier8DmGOIGrx9LhR0-twUO6p3dAP4IFVwNKWIbPb6N4QFysQNeJWeH8Mserq6hfk8e9ynjr2EPQ4iAb6D-TPmuvEOvezsUOH0-T9Dt5cW35efZ6sunq-ViNXOccTkTnjTSeSE0o0orzV1HFNfEteMbNOmclS3xPfGO9S0jAIJyzr1irmWdbgU_QVeTr092a_Y57Gx-NMkGcxBS3hiba3ADGBAN6YUDR4EJrrhypLOgFWhmO93D6PV-8trn9OMeSjXbdJ_juL5hQkqpG9m045SeplxOpWTojQv18CE12zAYSsxTWGYKyzyFZZ7DGln-D_tn4_9TZxMVAOCFUE0rNVX8Nx4BoWo |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_TCYB_2020_3035800 crossref_primary_10_1109_ACCESS_2020_3036078 crossref_primary_10_1109_ACCESS_2024_3522303 crossref_primary_10_1109_TASE_2021_3069003 crossref_primary_10_1016_j_ymssp_2020_106787 crossref_primary_10_1109_ACCESS_2021_3111592 crossref_primary_10_1109_TNNLS_2020_3043110 crossref_primary_10_1109_TSMC_2019_2957818 crossref_primary_10_1109_JSEN_2022_3233660 crossref_primary_10_1109_ACCESS_2021_3052102 crossref_primary_10_1109_TCYB_2020_3035518 crossref_primary_10_1109_TSMC_2020_3006124 crossref_primary_10_1007_s11771_021_4702_1 crossref_primary_10_1109_ACCESS_2024_3521295 crossref_primary_10_1109_TCYB_2020_3015749 crossref_primary_10_1109_TCYB_2020_3041261 crossref_primary_10_1109_TCYB_2021_3061094 crossref_primary_10_1109_TIM_2020_3045843 |
| Cites_doi | 10.1109/EMBC.2017.8037526 10.1109/ICCV.2015.312 10.1155/2018/6934825 10.1109/TIE.2017.2764861 10.1109/TII.2018.2794987 10.1109/ICNC.2010.5583668 10.1109/ACCESS.2017.2752802 10.1109/TNNLS.2017.2716952 10.1109/TCYB.2018.2857815 10.1016/j.compchemeng.2007.08.011 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.224 10.1109/JLT.2016.2615468 10.1162/neco.2006.18.7.1527 10.1007/s00034-015-0068-7 10.1109/ICNN.1995.488968 10.1109/ISCC-C.2013.101 10.1007/s11432-017-9421-3 10.1109/TCYB.2018.2863020 10.1016/j.psep.2018.07.023 10.1002/stc.1718 10.1007/BF01386390 10.1016/j.jngse.2018.03.023 10.1016/S0098-1354(00)00442-7 10.1038/nature16961 10.1016/j.jlp.2013.11.006 10.1007/s11265-012-0690-6 10.23919/OCEANS.2015.7404375 10.1109/JSEN.2011.2155054 10.1016/j.psep.2016.08.014 10.1038/nature21056 10.1109/ICIEA.2009.5138220 10.1109/JPROC.2017.2761740 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2019.2908015 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 42353 |
| ExternalDocumentID | oai_doaj_org_article_e460f4cec1e243838c0bae98e92ab9fe 10_1109_ACCESS_2019_2908015 8675918 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61773109 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2017YFF0108800 funderid: 10.13039/501100012166 – fundername: Major Program of the National Natural Foundation of China grantid: 61627809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3235-4d065cd4492189893cb08390c753690bca570df0dc2f720ee41333d82c72b9743 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:43:48 EDT 2025 Sun Nov 09 07:39:09 EST 2025 Sat Nov 29 03:57:29 EST 2025 Tue Nov 18 22:52:10 EST 2025 Wed Aug 27 08:33:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3235-4d065cd4492189893cb08390c753690bca570df0dc2f720ee41333d82c72b9743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8801-0884 0000-0001-7293-8522 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8675918 |
| PQID | 2455596567 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2455596567 ieee_primary_8675918 crossref_citationtrail_10_1109_ACCESS_2019_2908015 doaj_primary_oai_doaj_org_article_e460f4cec1e243838c0bae98e92ab9fe crossref_primary_10_1109_ACCESS_2019_2908015 |
| PublicationCentury | 2000 |
| PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 20190000 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref2 ref1 zhou (ref10) 2006; 27 ref38 ref19 ref18 ozevin (ref9) 0 ref24 ref26 ref25 ref20 ref22 ref21 silver (ref16) 2016; 529 santos (ref17) 2013; 32 hinton (ref23) 2014 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 xu (ref35) 2002; 31 wang (ref33) 2013 |
| References_xml | – ident: ref28 doi: 10.1109/EMBC.2017.8037526 – ident: ref14 doi: 10.1109/ICCV.2015.312 – ident: ref19 doi: 10.1155/2018/6934825 – ident: ref11 doi: 10.1109/TIE.2017.2764861 – ident: ref31 doi: 10.1109/TII.2018.2794987 – ident: ref1 doi: 10.1109/ICNC.2010.5583668 – ident: ref8 doi: 10.1109/ACCESS.2017.2752802 – ident: ref25 doi: 10.1109/TNNLS.2017.2716952 – ident: ref24 doi: 10.1109/TCYB.2018.2857815 – ident: ref7 doi: 10.1016/j.compchemeng.2007.08.011 – ident: ref21 doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.224 – ident: ref12 doi: 10.1109/JLT.2016.2615468 – volume: 32 start-page: 1375 year: 2013 ident: ref17 article-title: Comparison between multilayer feedforward neural networks and a radial basis function network to detect and locate leaks in pipelines transporting gas publication-title: Chem Eng Trans – ident: ref18 doi: 10.1162/neco.2006.18.7.1527 – ident: ref34 doi: 10.1007/s00034-015-0068-7 – ident: ref32 doi: 10.1109/ICNN.1995.488968 – ident: ref22 doi: 10.1109/ISCC-C.2013.101 – ident: ref26 doi: 10.1007/s11432-017-9421-3 – volume: 31 start-page: 547 year: 2002 ident: ref35 article-title: Approximate entropy and its applications in mechanical fault diagnosis publication-title: Inf Control – ident: ref20 doi: 10.1109/TCYB.2018.2863020 – ident: ref38 doi: 10.1016/j.psep.2018.07.023 – ident: ref37 doi: 10.1002/stc.1718 – ident: ref29 doi: 10.1007/BF01386390 – ident: ref2 doi: 10.1016/j.jngse.2018.03.023 – ident: ref6 doi: 10.1016/S0098-1354(00)00442-7 – year: 0 ident: ref9 publication-title: Reliable monitoring of leak in gas pipelines using acoustic emission method – volume: 529 start-page: 484 year: 2016 ident: ref16 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – year: 2014 ident: ref23 publication-title: What's wrong with convolutional nets? – start-page: 301 year: 2013 ident: ref33 article-title: A hybrid search strategy based particle swarm optimization algorithm publication-title: Proc IEEE Conf Ind Electron Appl (ICIEA) – volume: 27 start-page: 121 year: 2006 ident: ref10 article-title: Distributed optical fiber sensing technology for pipeline leakage detection and location publication-title: ACTA PETROLEI SINICA – ident: ref3 doi: 10.1016/j.jlp.2013.11.006 – ident: ref36 doi: 10.1007/s11265-012-0690-6 – ident: ref27 doi: 10.23919/OCEANS.2015.7404375 – ident: ref4 doi: 10.1109/JSEN.2011.2155054 – ident: ref30 doi: 10.1016/j.psep.2016.08.014 – ident: ref15 doi: 10.1038/nature21056 – ident: ref5 doi: 10.1109/ICIEA.2009.5138220 – ident: ref13 doi: 10.1109/JPROC.2017.2761740 |
| SSID | ssj0000816957 |
| Score | 2.2601514 |
| Snippet | The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 42343 |
| SubjectTerms | Adaptive algorithms adaptive mutation particle swarm algorithm (APSO) broad learning system (BLS) Feature extraction Finite element method generalized cross correlation (GCC) Graph theory Learning systems Localization method Machine learning Manuals Mutation Neural networks Oils Performance enhancement Pipeline leakage detection and localization pipeline networks Pipelines Sensors Vibrations |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQxQEOCFoQSwvyoUdCHTuJ7eN224pDu-oBpN4sezxGFSWtuku_v2PHXa2EBBeulhMn48nMe9H4DWOHNgzYGwWNTqFvujSkhngWNN730agWsFOhNJvQy6W5urKXW62-ck3YJA88Ge4Iu0GkDhBalFlW04AIHq1BK32wCXP0FdpukakSg0072F5XmaFW2KP5YkFvlGu57BdpCSflRrhbqago9tcWK3_E5ZJszl6zVxUl8vn0dG_YMxx32cst7cA99mvOl7cPeMOJSPvIq07qDz5JkPNjyk5l9CcFDH6C61JyNXI_Rl6LMWiB85zJ6klMflGaSXNCsfzy-i6fU0e-nKrEV2_Z97PTb4uvTe2d0ICSiqweCVtA7DpLOdwSKIFAYMsKIHpChDiA77WISUSQSUuBSMlMqWgkaBmIY6h3bGe8HfE94z6DKt232g-yGxB9SlpJACGjDgrijMknMzqowuK5v8WNKwRDWDfZ3mXbu2r7Gfu8uehu0tX4-_TjvD-bqVkUuwyQq7jqKu5frjJje3l3NzcxRJZsa2bs4Gm3Xf2AV052PXEtArv6w_9Yep-9yK8z_bs5YDvr-9_4kT2Hh_X16v5T8d1HdPvxEw priority: 102 providerName: Directory of Open Access Journals |
| Title | A Novel Broad Learning System Based Leakage Detection and Universal Localization Method for Pipeline Networks |
| URI | https://ieeexplore.ieee.org/document/8675918 https://www.proquest.com/docview/2455596567 https://doaj.org/article/e460f4cec1e243838c0bae98e92ab9fe |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUA9dAe-kWrbkuRDz0ScOwkjo_LFtRDWXFoJW6WPR5XqJBF7MKxv71jx0RIrSr1EkWRnTh5tueNM37D2CfjO2x7BZWOvq2a2MWK_CyonGtDr2rARvmcbEIvl_3FhTnfYgfTXhhEzMFneJhO87_8sIK7tFR21BO7NXW_zba17sa9WtN6SkogYVpdhIVqYY7miwW9Q4reMofSEDNKqW8fGZ-s0V-SqvwxE2fzcvri_xr2kj0vNJLPR9xfsS0cXrNnj8QFd9n1nC9X93jFydN2gRch1R981Cjnx2S-8tWfNKPwz7jJMVkDd0PgJVqDHvA1mbqyVZOf5WzTnGguP7-8SRvZkS_HMPL1G_b99OTb4ktVkitUoKQiWAKRDwhNY8jIG2It4ImNGQHkv5DH7MG1WoQoAsiopUAka6dU6CVo6ckJUW_ZzrAa8B3jLrEu3dbadbLpEF2MWkkAIYP2CsKMyYevbqEoj6cEGFc2eyDC2BEqm6CyBaoZO5gq3YzCG_8ufpzgnIom1ex8gXCyZRBabDoRG0CoUSaJ1h6Ed2h6NNJ5E3HGdhO2000KrDO299A5bBnhayublpwxYsP6_d9rfWBPUwPH5Zo9trO5vcOP7Ancby7Xt_vZ96fj2a-T_dyRfwPF-O8r |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VgkQ58FVQFwr4wLFpHduJ4-N2oSpiG_VQpN4sx55UFSVbdbf9_Ywdd1UJhMQtsuzEybM9b5zxG4DPpquxaqQvdN9VherrviA_yxfOVaGRpUclu5RsQrdtc35uTjdgb30WBhFT8Bnux8v0Lz8s_G3cKjtoiN2asnkEjyulBB9Pa613VGIKCVPpLC1UcnMwnc3oLWL8ltkXhrhRTH77wPwklf6cVuWPtTgZmKMX_9e1l_A8E0k2HZF_BRs4vIZnD-QFt-HXlLWLO7xi5Gu7wLKU6gUbVcrZIRmwVPqT1hT2BVcpKmtgbggsx2vQA-bR2OXDmuwk5ZtmRHTZ6eV1PMqOrB0DyZdv4MfR17PZcZHTKxReCknABKIfPihlyMwb4i2-Iz5muCcPhnzmzrtK89Dz4EWvBUckeydlaITXoiM3RL6FzWEx4A4wF3mXrkrtaqFqRNf3WgrvuQi6kz5MQNx_deuz9nhMgXFlkw_CjR2hshEqm6GawN660fUovfHv6ocRznXVqJudCggnm6ehRVXzXnn0JYoo0tp43jk0DRrhOtPjBLYjtuubZFgnsHs_OGye40srVEXuGPFh_e7vrT7B0-Ozk7mdf2u_v4et2Nlx82YXNlc3t_gBnvi71eXy5mMayL8BFAzwTA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Broad+Learning+System+Based+Leakage+Detection+and+Universal+Localization+Method+for+Pipeline+Networks&rft.jtitle=IEEE+access&rft.au=Ma%2C+Dazhong&rft.au=Wang%2C+Junda&rft.au=Sun%2C+Qiuye&rft.au=Hu%2C+Xuguang&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=42343&rft.epage=42353&rft_id=info:doi/10.1109%2FACCESS.2019.2908015&rft.externalDocID=8675918 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |