A Novel Broad Learning System Based Leakage Detection and Universal Localization Method for Pipeline Networks

The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection and localization of pipeline networks in this paper. First, the detection algorithm based on the broad learning system (BLS) is used to dist...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 7; pp. 42343 - 42353
Main Authors: Ma, Dazhong, Wang, Junda, Sun, Qiuye, Hu, Xuguang
Format: Journal Article
Language:English
Published: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection and localization of pipeline networks in this paper. First, the detection algorithm based on the broad learning system (BLS) is used to distinguish abnormities under large-scale pipeline network environments. During the process, the varied BLS models result in indeterminate performance and fast ergodic structure search is executed via adaptive mutation particle swarm algorithm (APSO) to generate an appropriate structure, succinct parameters, speedability, and accuracy. And manual features are implanted into the BLS feature layer to targetedly improve performance for complex pipeline network signals. Second, based on the detection results, a universal Dijkstra-based applicable localization method is proposed for diverse topological pipeline structures, including mesh-form networks, which have fewer sensors than anchors. The synchronous approximation is adopted to shun local minimum, and the shrinkage of search domain economizes time. Revised BLS was contrasted with several networks trained by real pipeline data and the system was integrated into SCADA and applied on an operational large-scale pipeline network successfully.
AbstractList The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection and localization of pipeline networks in this paper. First, the detection algorithm based on the broad learning system (BLS) is used to distinguish abnormities under large-scale pipeline network environments. During the process, the varied BLS models result in indeterminate performance and fast ergodic structure search is executed via adaptive mutation particle swarm algorithm (APSO) to generate an appropriate structure, succinct parameters, speedability, and accuracy. And manual features are implanted into the BLS feature layer to targetedly improve performance for complex pipeline network signals. Second, based on the detection results, a universal Dijkstra-based applicable localization method is proposed for diverse topological pipeline structures, including mesh-form networks, which have fewer sensors than anchors. The synchronous approximation is adopted to shun local minimum, and the shrinkage of search domain economizes time. Revised BLS was contrasted with several networks trained by real pipeline data and the system was integrated into SCADA and applied on an operational large-scale pipeline network successfully.
Author Ma, Dazhong
Sun, Qiuye
Wang, Junda
Hu, Xuguang
Author_xml – sequence: 1
  givenname: Dazhong
  orcidid: 0000-0001-7293-8522
  surname: Ma
  fullname: Ma, Dazhong
  email: madazhong@ise.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Junda
  surname: Wang
  fullname: Wang, Junda
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Qiuye
  orcidid: 0000-0001-8801-0884
  surname: Sun
  fullname: Sun, Qiuye
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Xuguang
  surname: Hu
  fullname: Hu, Xuguang
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
BookMark eNp9kU9vEzEQxS1UJErpJ-jFEucE_921j2looVJakELPlteeDU43drDdovLp2WZLhTgwF4-e5_c09nuLjmKKgNAZJXNKif6wWC4v1us5I1TPmSaKUPkKHTPa6BmXvDn6q3-DTkvZkrHUKMn2GO0W-CY9wIDPc7Ier8DmGOIGrx9LhR0-twUO6p3dAP4IFVwNKWIbPb6N4QFysQNeJWeH8Mserq6hfk8e9ynjr2EPQ4iAb6D-TPmuvEOvezsUOH0-T9Dt5cW35efZ6sunq-ViNXOccTkTnjTSeSE0o0orzV1HFNfEteMbNOmclS3xPfGO9S0jAIJyzr1irmWdbgU_QVeTr092a_Y57Gx-NMkGcxBS3hiba3ADGBAN6YUDR4EJrrhypLOgFWhmO93D6PV-8trn9OMeSjXbdJ_juL5hQkqpG9m045SeplxOpWTojQv18CE12zAYSsxTWGYKyzyFZZ7DGln-D_tn4_9TZxMVAOCFUE0rNVX8Nx4BoWo
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TCYB_2020_3035800
crossref_primary_10_1109_ACCESS_2020_3036078
crossref_primary_10_1109_ACCESS_2024_3522303
crossref_primary_10_1109_TASE_2021_3069003
crossref_primary_10_1016_j_ymssp_2020_106787
crossref_primary_10_1109_ACCESS_2021_3111592
crossref_primary_10_1109_TNNLS_2020_3043110
crossref_primary_10_1109_TSMC_2019_2957818
crossref_primary_10_1109_JSEN_2022_3233660
crossref_primary_10_1109_ACCESS_2021_3052102
crossref_primary_10_1109_TCYB_2020_3035518
crossref_primary_10_1109_TSMC_2020_3006124
crossref_primary_10_1007_s11771_021_4702_1
crossref_primary_10_1109_ACCESS_2024_3521295
crossref_primary_10_1109_TCYB_2020_3015749
crossref_primary_10_1109_TCYB_2020_3041261
crossref_primary_10_1109_TCYB_2021_3061094
crossref_primary_10_1109_TIM_2020_3045843
Cites_doi 10.1109/EMBC.2017.8037526
10.1109/ICCV.2015.312
10.1155/2018/6934825
10.1109/TIE.2017.2764861
10.1109/TII.2018.2794987
10.1109/ICNC.2010.5583668
10.1109/ACCESS.2017.2752802
10.1109/TNNLS.2017.2716952
10.1109/TCYB.2018.2857815
10.1016/j.compchemeng.2007.08.011
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.224
10.1109/JLT.2016.2615468
10.1162/neco.2006.18.7.1527
10.1007/s00034-015-0068-7
10.1109/ICNN.1995.488968
10.1109/ISCC-C.2013.101
10.1007/s11432-017-9421-3
10.1109/TCYB.2018.2863020
10.1016/j.psep.2018.07.023
10.1002/stc.1718
10.1007/BF01386390
10.1016/j.jngse.2018.03.023
10.1016/S0098-1354(00)00442-7
10.1038/nature16961
10.1016/j.jlp.2013.11.006
10.1007/s11265-012-0690-6
10.23919/OCEANS.2015.7404375
10.1109/JSEN.2011.2155054
10.1016/j.psep.2016.08.014
10.1038/nature21056
10.1109/ICIEA.2009.5138220
10.1109/JPROC.2017.2761740
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2908015
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 42353
ExternalDocumentID oai_doaj_org_article_e460f4cec1e243838c0bae98e92ab9fe
10_1109_ACCESS_2019_2908015
8675918
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773109
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2017YFF0108800
  funderid: 10.13039/501100012166
– fundername: Major Program of the National Natural Foundation of China
  grantid: 61627809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3235-4d065cd4492189893cb08390c753690bca570df0dc2f720ee41333d82c72b9743
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:43:48 EDT 2025
Sun Nov 09 07:39:09 EST 2025
Sat Nov 29 03:57:29 EST 2025
Tue Nov 18 22:52:10 EST 2025
Wed Aug 27 08:33:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3235-4d065cd4492189893cb08390c753690bca570df0dc2f720ee41333d82c72b9743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8801-0884
0000-0001-7293-8522
OpenAccessLink https://ieeexplore.ieee.org/document/8675918
PQID 2455596567
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_2455596567
ieee_primary_8675918
crossref_citationtrail_10_1109_ACCESS_2019_2908015
doaj_primary_oai_doaj_org_article_e460f4cec1e243838c0bae98e92ab9fe
crossref_primary_10_1109_ACCESS_2019_2908015
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref2
ref1
zhou (ref10) 2006; 27
ref38
ref19
ref18
ozevin (ref9) 0
ref24
ref26
ref25
ref20
ref22
ref21
silver (ref16) 2016; 529
santos (ref17) 2013; 32
hinton (ref23) 2014
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
xu (ref35) 2002; 31
wang (ref33) 2013
References_xml – ident: ref28
  doi: 10.1109/EMBC.2017.8037526
– ident: ref14
  doi: 10.1109/ICCV.2015.312
– ident: ref19
  doi: 10.1155/2018/6934825
– ident: ref11
  doi: 10.1109/TIE.2017.2764861
– ident: ref31
  doi: 10.1109/TII.2018.2794987
– ident: ref1
  doi: 10.1109/ICNC.2010.5583668
– ident: ref8
  doi: 10.1109/ACCESS.2017.2752802
– ident: ref25
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref24
  doi: 10.1109/TCYB.2018.2857815
– ident: ref7
  doi: 10.1016/j.compchemeng.2007.08.011
– ident: ref21
  doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.224
– ident: ref12
  doi: 10.1109/JLT.2016.2615468
– volume: 32
  start-page: 1375
  year: 2013
  ident: ref17
  article-title: Comparison between multilayer feedforward neural networks and a radial basis function network to detect and locate leaks in pipelines transporting gas
  publication-title: Chem Eng Trans
– ident: ref18
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref34
  doi: 10.1007/s00034-015-0068-7
– ident: ref32
  doi: 10.1109/ICNN.1995.488968
– ident: ref22
  doi: 10.1109/ISCC-C.2013.101
– ident: ref26
  doi: 10.1007/s11432-017-9421-3
– volume: 31
  start-page: 547
  year: 2002
  ident: ref35
  article-title: Approximate entropy and its applications in mechanical fault diagnosis
  publication-title: Inf Control
– ident: ref20
  doi: 10.1109/TCYB.2018.2863020
– ident: ref38
  doi: 10.1016/j.psep.2018.07.023
– ident: ref37
  doi: 10.1002/stc.1718
– ident: ref29
  doi: 10.1007/BF01386390
– ident: ref2
  doi: 10.1016/j.jngse.2018.03.023
– ident: ref6
  doi: 10.1016/S0098-1354(00)00442-7
– year: 0
  ident: ref9
  publication-title: Reliable monitoring of leak in gas pipelines using acoustic emission method
– volume: 529
  start-page: 484
  year: 2016
  ident: ref16
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– year: 2014
  ident: ref23
  publication-title: What's wrong with convolutional nets?
– start-page: 301
  year: 2013
  ident: ref33
  article-title: A hybrid search strategy based particle swarm optimization algorithm
  publication-title: Proc IEEE Conf Ind Electron Appl (ICIEA)
– volume: 27
  start-page: 121
  year: 2006
  ident: ref10
  article-title: Distributed optical fiber sensing technology for pipeline leakage detection and location
  publication-title: ACTA PETROLEI SINICA
– ident: ref3
  doi: 10.1016/j.jlp.2013.11.006
– ident: ref36
  doi: 10.1007/s11265-012-0690-6
– ident: ref27
  doi: 10.23919/OCEANS.2015.7404375
– ident: ref4
  doi: 10.1109/JSEN.2011.2155054
– ident: ref30
  doi: 10.1016/j.psep.2016.08.014
– ident: ref15
  doi: 10.1038/nature21056
– ident: ref5
  doi: 10.1109/ICIEA.2009.5138220
– ident: ref13
  doi: 10.1109/JPROC.2017.2761740
SSID ssj0000816957
Score 2.2601514
Snippet The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42343
SubjectTerms Adaptive algorithms
adaptive mutation particle swarm algorithm (APSO)
broad learning system (BLS)
Feature extraction
Finite element method
generalized cross correlation (GCC)
Graph theory
Learning systems
Localization method
Machine learning
Manuals
Mutation
Neural networks
Oils
Performance enhancement
Pipeline leakage detection and localization
pipeline networks
Pipelines
Sensors
Vibrations
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQxQEOCFoQSwvyoUdCHTuJ7eN224pDu-oBpN4sezxGFSWtuku_v2PHXa2EBBeulhMn48nMe9H4DWOHNgzYGwWNTqFvujSkhngWNN730agWsFOhNJvQy6W5urKXW62-ck3YJA88Ge4Iu0GkDhBalFlW04AIHq1BK32wCXP0FdpukakSg0072F5XmaFW2KP5YkFvlGu57BdpCSflRrhbqago9tcWK3_E5ZJszl6zVxUl8vn0dG_YMxx32cst7cA99mvOl7cPeMOJSPvIq07qDz5JkPNjyk5l9CcFDH6C61JyNXI_Rl6LMWiB85zJ6klMflGaSXNCsfzy-i6fU0e-nKrEV2_Z97PTb4uvTe2d0ICSiqweCVtA7DpLOdwSKIFAYMsKIHpChDiA77WISUSQSUuBSMlMqWgkaBmIY6h3bGe8HfE94z6DKt232g-yGxB9SlpJACGjDgrijMknMzqowuK5v8WNKwRDWDfZ3mXbu2r7Gfu8uehu0tX4-_TjvD-bqVkUuwyQq7jqKu5frjJje3l3NzcxRJZsa2bs4Gm3Xf2AV052PXEtArv6w_9Yep-9yK8z_bs5YDvr-9_4kT2Hh_X16v5T8d1HdPvxEw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Broad Learning System Based Leakage Detection and Universal Localization Method for Pipeline Networks
URI https://ieeexplore.ieee.org/document/8675918
https://www.proquest.com/docview/2455596567
https://doaj.org/article/e460f4cec1e243838c0bae98e92ab9fe
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUA9dAe-kWrbkuRDz0ScOwkjo_LFtRDWXFoJW6WPR5XqJBF7MKxv71jx0RIrSr1EkWRnTh5tueNM37D2CfjO2x7BZWOvq2a2MWK_CyonGtDr2rARvmcbEIvl_3FhTnfYgfTXhhEzMFneJhO87_8sIK7tFR21BO7NXW_zba17sa9WtN6SkogYVpdhIVqYY7miwW9Q4reMofSEDNKqW8fGZ-s0V-SqvwxE2fzcvri_xr2kj0vNJLPR9xfsS0cXrNnj8QFd9n1nC9X93jFydN2gRch1R981Cjnx2S-8tWfNKPwz7jJMVkDd0PgJVqDHvA1mbqyVZOf5WzTnGguP7-8SRvZkS_HMPL1G_b99OTb4ktVkitUoKQiWAKRDwhNY8jIG2It4ImNGQHkv5DH7MG1WoQoAsiopUAka6dU6CVo6ckJUW_ZzrAa8B3jLrEu3dbadbLpEF2MWkkAIYP2CsKMyYevbqEoj6cEGFc2eyDC2BEqm6CyBaoZO5gq3YzCG_8ufpzgnIom1ex8gXCyZRBabDoRG0CoUSaJ1h6Ed2h6NNJ5E3HGdhO2000KrDO299A5bBnhayublpwxYsP6_d9rfWBPUwPH5Zo9trO5vcOP7Ancby7Xt_vZ96fj2a-T_dyRfwPF-O8r
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VgkQ58FVQFwr4wLFpHduJ4-N2oSpiG_VQpN4sx55UFSVbdbf9_Ywdd1UJhMQtsuzEybM9b5zxG4DPpquxaqQvdN9VherrviA_yxfOVaGRpUclu5RsQrdtc35uTjdgb30WBhFT8Bnux8v0Lz8s_G3cKjtoiN2asnkEjyulBB9Pa613VGIKCVPpLC1UcnMwnc3oLWL8ltkXhrhRTH77wPwklf6cVuWPtTgZmKMX_9e1l_A8E0k2HZF_BRs4vIZnD-QFt-HXlLWLO7xi5Gu7wLKU6gUbVcrZIRmwVPqT1hT2BVcpKmtgbggsx2vQA-bR2OXDmuwk5ZtmRHTZ6eV1PMqOrB0DyZdv4MfR17PZcZHTKxReCknABKIfPihlyMwb4i2-Iz5muCcPhnzmzrtK89Dz4EWvBUckeydlaITXoiM3RL6FzWEx4A4wF3mXrkrtaqFqRNf3WgrvuQi6kz5MQNx_deuz9nhMgXFlkw_CjR2hshEqm6GawN660fUovfHv6ocRznXVqJudCggnm6ehRVXzXnn0JYoo0tp43jk0DRrhOtPjBLYjtuubZFgnsHs_OGye40srVEXuGPFh_e7vrT7B0-Ozk7mdf2u_v4et2Nlx82YXNlc3t_gBnvi71eXy5mMayL8BFAzwTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Broad+Learning+System+Based+Leakage+Detection+and+Universal+Localization+Method+for+Pipeline+Networks&rft.jtitle=IEEE+access&rft.au=Ma%2C+Dazhong&rft.au=Wang%2C+Junda&rft.au=Sun%2C+Qiuye&rft.au=Hu%2C+Xuguang&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=42343&rft.epage=42353&rft_id=info:doi/10.1109%2FACCESS.2019.2908015&rft.externalDocID=8675918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon