A Novel Broad Learning System Based Leakage Detection and Universal Localization Method for Pipeline Networks
The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection and localization of pipeline networks in this paper. First, the detection algorithm based on the broad learning system (BLS) is used to dist...
Uložené v:
| Vydané v: | IEEE access Ročník 7; s. 42343 - 42353 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The security of pipeline systems draws attention increasingly; therefore, a novel method based on neural network and graph theory is proposed for the detection and localization of pipeline networks in this paper. First, the detection algorithm based on the broad learning system (BLS) is used to distinguish abnormities under large-scale pipeline network environments. During the process, the varied BLS models result in indeterminate performance and fast ergodic structure search is executed via adaptive mutation particle swarm algorithm (APSO) to generate an appropriate structure, succinct parameters, speedability, and accuracy. And manual features are implanted into the BLS feature layer to targetedly improve performance for complex pipeline network signals. Second, based on the detection results, a universal Dijkstra-based applicable localization method is proposed for diverse topological pipeline structures, including mesh-form networks, which have fewer sensors than anchors. The synchronous approximation is adopted to shun local minimum, and the shrinkage of search domain economizes time. Revised BLS was contrasted with several networks trained by real pipeline data and the system was integrated into SCADA and applied on an operational large-scale pipeline network successfully. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2019.2908015 |