Power Plant Model Parameter Calibration Using Conditional Variational Autoencoder

Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor measurement-based generator parameter calibration method by a novel deep learning method with high computational efficiency. An elementary effects-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on power systems Ročník 37; číslo 2; s. 1642 - 1652
Hlavní autori: Khazeiynasab, Seyyed Rashid, Zhao, Junbo, Batarseh, Issa, Tan, Bendong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0885-8950, 1558-0679
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor measurement-based generator parameter calibration method by a novel deep learning method with high computational efficiency. An elementary effects-based approach is developed to identify the critical parameters from a nonlinear system with much better performance than the widely used trajectory sensitivity-based method. Then, synchrophasor measurement-based conditional variational autoencoder is developed to estimate the parameters' posterior distributions even in the presence of a high-dimensional case with eighteen critical parameters to be calibrated. The effectiveness of the proposed method is validated for a hydro generator with a very detailed model. The results show that the proposed approach can accurately and efficiently estimate the generator parameters' posterior distributions even when the parameters true values are not in support of the prior distribution.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2021.3107515