Applying instance space analysis for metaheuristic selection to the 0–1 multidemand multidimensional knapsack problem
The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the optimization problem test instances employed. This paper presents a methodology for analyzing the performance of metaheuristics applied to the 0–1 multi...
Saved in:
| Published in: | Computers & operations research Vol. 170; p. 106747 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2024
|
| Subjects: | |
| ISSN: | 0305-0548 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the optimization problem test instances employed. This paper presents a methodology for analyzing the performance of metaheuristics applied to the 0–1 multidemand multidimensional knapsack problem (MDMKP) specifically considering problem structure. This research leverages instance space analysis (ISA) to graphically depict both the multidimensional problem structure and metaheuristic performance. A new instance generation method augments the existing set of test instances; in doing so, it introduces correlation structure into the problem and helps ensure MDMKP instance feasibility. Testing compares four metaheuristics from the literature and trains an interpretable machine learning model to select a metaheuristic for a given instance based on that problem’s meta-features. The results show that the correlation structure meta-features are significant factors affecting metaheuristic performance and that a decision tree model can provide interpretable insights into the algorithm selection problem. This work demonstrates the usefulness of ISA for rigorous empirical testing to enhance understanding the performance of metaheuristics applied to the MDMKP.
•Metaheuristic Selection with Instance Space Analysis.•Propose interpretable Machine Learning method for Algorithm Selection Problem.•Apply Algorithm Selection Problem to Multidemand Multidimensional Knapsack Problem. |
|---|---|
| AbstractList | The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the optimization problem test instances employed. This paper presents a methodology for analyzing the performance of metaheuristics applied to the 0–1 multidemand multidimensional knapsack problem (MDMKP) specifically considering problem structure. This research leverages instance space analysis (ISA) to graphically depict both the multidimensional problem structure and metaheuristic performance. A new instance generation method augments the existing set of test instances; in doing so, it introduces correlation structure into the problem and helps ensure MDMKP instance feasibility. Testing compares four metaheuristics from the literature and trains an interpretable machine learning model to select a metaheuristic for a given instance based on that problem’s meta-features. The results show that the correlation structure meta-features are significant factors affecting metaheuristic performance and that a decision tree model can provide interpretable insights into the algorithm selection problem. This work demonstrates the usefulness of ISA for rigorous empirical testing to enhance understanding the performance of metaheuristics applied to the MDMKP.
•Metaheuristic Selection with Instance Space Analysis.•Propose interpretable Machine Learning method for Algorithm Selection Problem.•Apply Algorithm Selection Problem to Multidemand Multidimensional Knapsack Problem. |
| ArticleNumber | 106747 |
| Author | Cox, Bruce A. Lunday, Brian J. Scherer, Matthew E. Hill, Raymond R. White, Edward D. |
| Author_xml | – sequence: 1 givenname: Matthew E. orcidid: 0009-0001-2316-0299 surname: Scherer fullname: Scherer, Matthew E. email: matthewescherer97@gmail.com – sequence: 2 givenname: Raymond R. surname: Hill fullname: Hill, Raymond R. – sequence: 3 givenname: Brian J. surname: Lunday fullname: Lunday, Brian J. – sequence: 4 givenname: Bruce A. surname: Cox fullname: Cox, Bruce A. – sequence: 5 givenname: Edward D. surname: White fullname: White, Edward D. |
| BookMark | eNp9kDtOAzEQQF0EiSRwADpfIMHej21EFUX8pEg0UFuz3lniZNe7sh1QOu7ADTkJjpKKIlPMR5o30rwJGbneISE3nM054-J2Mze9n2csK9IsZCFHZMxyVs5YWahLMglhw1LIjI_J12IY2r11H9S6EMEZpGGAlMFBuw820Kb3tMMIa9x5G6I1NGCLJtre0djTuEbKfr9_OO12bbQ1duDqU287dCHtQUu3DoYAZksH31ctdlfkooE24PWpTsn748Pb8nm2en16WS5WM5NnWZyhMqaolSy5gqZggkkoK8NAQFEhAhdlJVnFM1kVZS2kuuOGCVQqVzmXUlT5lPDjXeP7EDw2evC2A7_XnOmDLb3RyZY-2NJHW4mR_xhjIxwejh5se5a8P5KYXvq06HUwFpPU2vqkTNe9PUP_AfeYjDU |
| CitedBy_id | crossref_primary_10_1016_j_ejor_2025_02_006 crossref_primary_10_59324_ejaset_2025_3_2__08 crossref_primary_10_1016_j_softx_2025_102246 |
| Cites_doi | 10.1287/opre.42.2.201 10.1609/aaai.v36i9.21194 10.1080/03610918208812265 10.1016/j.ejor.2018.10.001 10.1287/opre.1070.0398 10.1007/s10994-017-5629-5 10.1007/s10732-008-9100-4 10.1016/j.ijforecast.2016.09.004 10.1016/j.ejor.2023.04.023 10.12928/ijio.v3i1.5073 10.1007/BF02430364 10.1016/j.cor.2013.11.015 10.1016/j.cor.2011.07.006 10.1016/j.ejor.2021.12.009 10.1145/3436893 10.1016/j.cor.2020.105184 10.1038/s42256-019-0048-x 10.1016/j.ejor.2022.04.012 10.1007/s10951-021-00701-x 10.1016/S0065-2458(08)60520-3 10.1023/A:1009642405419 10.1080/0305215X.2019.1658748 10.1162/evco_a_00262 10.1145/1456650.1456656 10.1287/ijoc.1090.0330 10.1016/S0166-218X(03)00431-1 10.1007/s10994-017-5633-9 10.1016/j.cor.2004.03.002 10.1145/3572895 10.1287/ijoc.2.1.94 10.1109/4235.585893 10.1016/j.cor.2005.07.007 10.1080/0305215X.2021.1933965 10.1007/s10618-019-00661-z 10.1016/j.cor.2015.04.022 10.1287/ijoc.1030.0050 10.1016/j.cor.2010.06.009 10.1287/mnsc.46.2.302.11930 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cor.2024.106747 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| ExternalDocumentID | 10_1016_j_cor_2024_106747 S0305054824002193 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c322t-e8cc4d87518af40607a5bc0a6a4beea165b70b127b45d67891c06e883831776b3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271441400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Tue Nov 18 22:04:17 EST 2025 Sat Nov 29 03:23:47 EST 2025 Sat Aug 31 16:00:29 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metaheuristics Instance space analysis Algorithm selection problem Multidemand multidimensional knapsack problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c322t-e8cc4d87518af40607a5bc0a6a4beea165b70b127b45d67891c06e883831776b3 |
| ORCID | 0009-0001-2316-0299 |
| ParticipantIDs | crossref_primary_10_1016_j_cor_2024_106747 crossref_citationtrail_10_1016_j_cor_2024_106747 elsevier_sciencedirect_doi_10_1016_j_cor_2024_106747 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & operations research |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lin, Zhong, Hu, Rudin, Seltzer (b31) 2020 Muñoz, Villanova, Baatar, Smith-Miles (b36) 2018; 107 Muñoz, Smith-Miles (b34) 2020 Rudin (b41) 2019; 1 Hvattum, Lø kketangen (b22) 2007 Arntzen, Hvattum, Løkketangen (b2) 2006; 33 Hill, Moore, Hiremath, Cho (b16) 2011; 18 Iman, Conover (b23) 1982; 11 Glover, Kochenberger (b11) 1996 Smith-Miles (b44) 2009; 41 Lai, Hao, Yue (b29) 2019; 274 Smith-Miles, Baatar, Wreford, Lewis (b46) 2014; 45 Kang, Hyndman, Smith-Miles (b27) 2017; 33 Pisinger (b38) 2005; 32 Scherer, Hill, Lunday, Cox, White (b43) 2023 Smith-Miles, Lopes (b49) 2012; 39 McTavish, H., Zhong, C., Achermann, R., Karimalis, I., Chen, J., Rudin, C., Seltzer, M., 2022. Fast sparse decision tree optimization via reference ensembles. In: Proceedings of the Thirty Sixth AAAI Conference on Artificial Intelligence. pp. 9604–9613. Hu, Rudin, Seltzer (b20) 2019; 32 Reilly (b39) 2009; 21 Scherer (b42) 2024 Bierwirth, Mattfeld, Watson (b4) 2004 Cappanera, Trubian (b6) 2005; 17 Jooken, Leyman, De Causmaecker (b25) 2023; 311 Hill, Cho, Moore (b15) 2012; 39 Wolpert, Macready (b52) 1997; 1 Chu, Beasley (b8) 1998; 4 Glover, Kochenberger (b12) 2006 Smith-Miles (b45) 2019 Greenberg (b13) 1990; 2 Hall, Posner (b14) 2007; 55 Smith-Miles, Christiansen, Muñoz (b48) 2021; 128 Bertsimas, Dunn (b3) 2017; 106 Jooken, Leyman, De Causmaecker (b24) 2022; 301 Smith-Miles, Bowly (b47) 2015; 63 Hill, Reilly (b17) 2000; 46 Muñoz, Yan, Leal, Smith-Miles, Lorena, Pappa, Rodrigues (b37) 2021; 15 Song, Emerick, Lu, Vasko (b51) 2022; 54 Kandanaarachchi, Muñoz, Hyndman, Smith-Miles (b26) 2020; 34 Hooker (b19) 1995; 1 Hvattum, Arntzen, Lø kketangen, Glover (b21) 2010; 16 Lu, Vasko (b32) 2020; 52 Cho, Moore, Hill, Reilly (b7) 2008; 3 Hooker (b18) 1994; 42 Cappanera, Gallo, Maffioli (b5) 2003; 133 Laguna, Martí (b28) 2003 Alipour, Muñoz, Smith-Miles (b1) 2023; 304 Rice (b40) 1976; 15 Muñoz, Smith-Miles (b35) 2020; 28 Lamine, Khemakhem, Chabchoub (b30) 2012; 46 Smith-Miles, Muñoz (b50) 2023; 55 Dellinger, Lu, Song, Vasko (b10) 2022; 3 De Coster, Musliu, Schaerf, Schoisswohl, Smith-Miles (b9) 2022; 25 Smith-Miles (10.1016/j.cor.2024.106747_b48) 2021; 128 Lamine (10.1016/j.cor.2024.106747_b30) 2012; 46 Smith-Miles (10.1016/j.cor.2024.106747_b45) 2019 Iman (10.1016/j.cor.2024.106747_b23) 1982; 11 Glover (10.1016/j.cor.2024.106747_b12) 2006 10.1016/j.cor.2024.106747_b33 Kang (10.1016/j.cor.2024.106747_b27) 2017; 33 Lin (10.1016/j.cor.2024.106747_b31) 2020 Muñoz (10.1016/j.cor.2024.106747_b36) 2018; 107 Pisinger (10.1016/j.cor.2024.106747_b38) 2005; 32 Hill (10.1016/j.cor.2024.106747_b15) 2012; 39 Reilly (10.1016/j.cor.2024.106747_b39) 2009; 21 Arntzen (10.1016/j.cor.2024.106747_b2) 2006; 33 Hooker (10.1016/j.cor.2024.106747_b18) 1994; 42 Hill (10.1016/j.cor.2024.106747_b17) 2000; 46 Hu (10.1016/j.cor.2024.106747_b20) 2019; 32 Jooken (10.1016/j.cor.2024.106747_b25) 2023; 311 Jooken (10.1016/j.cor.2024.106747_b24) 2022; 301 Muñoz (10.1016/j.cor.2024.106747_b37) 2021; 15 Kandanaarachchi (10.1016/j.cor.2024.106747_b26) 2020; 34 Cappanera (10.1016/j.cor.2024.106747_b6) 2005; 17 Smith-Miles (10.1016/j.cor.2024.106747_b46) 2014; 45 Bierwirth (10.1016/j.cor.2024.106747_b4) 2004 Scherer (10.1016/j.cor.2024.106747_b43) 2023 Smith-Miles (10.1016/j.cor.2024.106747_b50) 2023; 55 Bertsimas (10.1016/j.cor.2024.106747_b3) 2017; 106 Lu (10.1016/j.cor.2024.106747_b32) 2020; 52 Dellinger (10.1016/j.cor.2024.106747_b10) 2022; 3 Cappanera (10.1016/j.cor.2024.106747_b5) 2003; 133 Rice (10.1016/j.cor.2024.106747_b40) 1976; 15 Smith-Miles (10.1016/j.cor.2024.106747_b49) 2012; 39 Scherer (10.1016/j.cor.2024.106747_b42) 2024 Hill (10.1016/j.cor.2024.106747_b16) 2011; 18 Song (10.1016/j.cor.2024.106747_b51) 2022; 54 Lai (10.1016/j.cor.2024.106747_b29) 2019; 274 Hall (10.1016/j.cor.2024.106747_b14) 2007; 55 Cho (10.1016/j.cor.2024.106747_b7) 2008; 3 Wolpert (10.1016/j.cor.2024.106747_b52) 1997; 1 Smith-Miles (10.1016/j.cor.2024.106747_b44) 2009; 41 Smith-Miles (10.1016/j.cor.2024.106747_b47) 2015; 63 Greenberg (10.1016/j.cor.2024.106747_b13) 1990; 2 Alipour (10.1016/j.cor.2024.106747_b1) 2023; 304 Hooker (10.1016/j.cor.2024.106747_b19) 1995; 1 De Coster (10.1016/j.cor.2024.106747_b9) 2022; 25 Laguna (10.1016/j.cor.2024.106747_b28) 2003 Hvattum (10.1016/j.cor.2024.106747_b21) 2010; 16 Chu (10.1016/j.cor.2024.106747_b8) 1998; 4 Hvattum (10.1016/j.cor.2024.106747_b22) 2007 Muñoz (10.1016/j.cor.2024.106747_b34) 2020 Glover (10.1016/j.cor.2024.106747_b11) 1996 Muñoz (10.1016/j.cor.2024.106747_b35) 2020; 28 Rudin (10.1016/j.cor.2024.106747_b41) 2019; 1 |
| References_xml | – reference: McTavish, H., Zhong, C., Achermann, R., Karimalis, I., Chen, J., Rudin, C., Seltzer, M., 2022. Fast sparse decision tree optimization via reference ensembles. In: Proceedings of the Thirty Sixth AAAI Conference on Artificial Intelligence. pp. 9604–9613. – volume: 33 start-page: 2508 year: 2006 end-page: 2525 ident: b2 article-title: Adaptive memory search for multidemand multidimensional knapsack problems publication-title: Comput. Oper. Res. – volume: 52 start-page: 1632 year: 2020 end-page: 1644 ident: b32 article-title: A comprehensive empirical demonstration of the impact of choice constraints on solving generalizations of the 0–1 knapsack problem using the integer programming option of CPLEX® publication-title: Eng. Optim. – volume: 304 start-page: 411 year: 2023 end-page: 428 ident: b1 article-title: Enhanced instance space analysis for the maximum flow problem publication-title: European J. Oper. Res. – volume: 18 start-page: 105 year: 2011 end-page: 128 ident: b16 article-title: Test problem generation of binary knapsack problem variants and the implications of their use publication-title: Int. J. Oper. Quant. Manag. – year: 2024 ident: b42 article-title: Scherer multidemand multidimensional KP instances – volume: 1 start-page: 33 year: 1995 end-page: 42 ident: b19 article-title: Testing heuristics: We have it all wrong publication-title: J. Heuristics – volume: 3 start-page: 1 year: 2022 end-page: 17 ident: b10 article-title: Generating bounded solutions for multi-demand multidimensional knapsack problems: a guide for operations research practitioners publication-title: Int. J. Ind. Optim. – volume: 45 start-page: 12 year: 2014 end-page: 24 ident: b46 article-title: Towards objective measures of algorithm performance across instance space publication-title: Comput. Oper. Res. – volume: 32 year: 2019 ident: b20 article-title: Optimal sparse decision trees publication-title: Adv. Neural Inf. Process. Syst. – volume: 41 start-page: 1 year: 2009 end-page: 25 ident: b44 article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection publication-title: ACM Comput. Surv. – volume: 25 start-page: 1 year: 2022 end-page: 24 ident: b9 article-title: Algorithm selection and instance space analysis for curriculum-based course timetabling publication-title: J. Sched. – volume: 55 start-page: 703 year: 2007 end-page: 716 ident: b14 article-title: Performance prediction and preselection for optimization and heuristic solution procedures publication-title: Oper. Res. – volume: 1 start-page: 206 year: 2019 end-page: 215 ident: b41 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. – volume: 28 start-page: 379 year: 2020 end-page: 404 ident: b35 article-title: Generating new space-filling test instances for continuous black-box optimization publication-title: Evolut. Comput. – volume: 15 start-page: 65 year: 1976 end-page: 118 ident: b40 article-title: The algorithm selection problem publication-title: Adv. Comput. – volume: 46 start-page: 71 year: 2012 end-page: 94 ident: b30 article-title: Knapsack problems involving dimensions, demands and multiple choice constraints: generalization and transformations between formulations publication-title: Int. J. Adv. Sci. Technol. – volume: 32 start-page: 2271 year: 2005 end-page: 2284 ident: b38 article-title: Where are the hard knapsack problems? publication-title: Comput. Oper. Res. – volume: 107 start-page: 109 year: 2018 end-page: 147 ident: b36 article-title: Instance spaces for machine learning classification publication-title: Mach. Learn. – year: 2019 ident: b45 article-title: MATILDA: melbourne algorithm test instance library with data analytics – volume: 55 start-page: 1 year: 2023 end-page: 31 ident: b50 article-title: Instance space analysis for algorithm testing: Methodology and software tools publication-title: ACM Comput. Surv. – volume: 311 start-page: 36 year: 2023 end-page: 55 ident: b25 article-title: Features for the 0-1 knapsack problem based on inclusionwise maximal solutions publication-title: European J. Oper. Res. – volume: 274 start-page: 35 year: 2019 end-page: 48 ident: b29 article-title: Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem publication-title: European J. Oper. Res. – start-page: 21 year: 2004 end-page: 30 ident: b4 article-title: Landscape regularity and random walks for the job-shop scheduling problem publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization – volume: 42 start-page: 201 year: 1994 end-page: 212 ident: b18 article-title: Needed: An empirical science of algorithms publication-title: Oper. Res. – volume: 106 start-page: 1039 year: 2017 end-page: 1082 ident: b3 article-title: Optimal classification trees publication-title: Mach. Learn. – volume: 2 start-page: 94 year: 1990 end-page: 97 ident: b13 article-title: Computational testing: Why, how and how much publication-title: ORSA J. Comput. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b52 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 311 year: 1982 end-page: 334 ident: b23 article-title: A distribution-free approach to inducing rank correlation among input variables publication-title: Comm. Statist. Simulation Comput. – volume: 301 start-page: 841 year: 2022 end-page: 854 ident: b24 article-title: A new class of hard problem instances for the 0–1 knapsack problem publication-title: European J. Oper. Res. – year: 2003 ident: b28 article-title: Scatter Search: Methodology and Implementations in C – year: 2020 ident: b34 article-title: Instance Space Analysis: A Toolkit for the Assessment of Algorithmic Power – volume: 21 start-page: 458 year: 2009 end-page: 467 ident: b39 article-title: Synthetic optimization problem generation: show us the correlations! publication-title: INFORMS J. Comput. – start-page: 3 year: 2007 end-page: 24 ident: b22 article-title: Experiments using scatter search for the multidemand multidimensional knapsack problem publication-title: Metaheuristics – volume: 16 start-page: 239 year: 2010 end-page: 258 ident: b21 article-title: Alternating control tree search for knapsack/covering problems publication-title: J. Heuristics – volume: 133 start-page: 3 year: 2003 end-page: 28 ident: b5 article-title: Discrete facility location and routing of obnoxious activities publication-title: Discrete Appl. Math. – start-page: 6150 year: 2020 end-page: 6160 ident: b31 article-title: Generalized and scalable optimal sparse decision trees publication-title: International Conference on Machine Learning – volume: 46 start-page: 302 year: 2000 end-page: 317 ident: b17 article-title: The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance publication-title: Manage. Sci. – volume: 34 start-page: 309 year: 2020 end-page: 354 ident: b26 article-title: On normalization and algorithm selection for unsupervised outlier detection publication-title: Data Min. Knowl. Discov. – start-page: 407 year: 1996 end-page: 427 ident: b11 article-title: Critical event tabu search for multidimensional knapsack problems publication-title: Meta-Heuristics – volume: 4 start-page: 63 year: 1998 end-page: 86 ident: b8 article-title: A genetic algorithm for the multidimensional knapsack problem publication-title: J. Heuristics – volume: 54 start-page: 894 year: 2022 end-page: 906 ident: b51 article-title: When to use Integer Programming Software to solve large multi-demand multidimensional knapsack problems: a guide for operations research practitioners publication-title: Eng. Optim. – volume: 3 start-page: 530 year: 2008 end-page: 548 ident: b7 article-title: Exploiting empirical knowledge for bi-dimensional knapsack problem heuristics publication-title: Int. J. Ind. Syst. Eng. – volume: 15 start-page: 1 year: 2021 end-page: 25 ident: b37 article-title: An instance space analysis of regression problems publication-title: ACM Trans. Knowl. Discov. Data (TKDD) – year: 2023 ident: b43 article-title: Verifying new instances of the multidemand multidimensional knapsack problem with instance space analysis publication-title: Comput. Oper. Res. – volume: 128 year: 2021 ident: b48 article-title: Revisiting where are the hard knapsack problems? via instance space analysis publication-title: Comput. Oper. Res. – year: 2006 ident: b12 article-title: Handbook of Metaheuristics – volume: 63 start-page: 102 year: 2015 end-page: 113 ident: b47 article-title: Generating new test instances by evolving in instance space publication-title: Comput. Oper. Res. – volume: 39 start-page: 875 year: 2012 end-page: 889 ident: b49 article-title: Measuring instance difficulty for combinatorial optimization problems publication-title: Comput. Oper. Res. – volume: 33 start-page: 345 year: 2017 end-page: 358 ident: b27 article-title: Visualising forecasting algorithm performance using time series instance spaces publication-title: Int. J. Forecast. – volume: 39 start-page: 19 year: 2012 end-page: 26 ident: b15 article-title: Problem reduction heuristic for the 0–1 multidimensional knapsack problem publication-title: Comput. Oper. Res. – volume: 17 start-page: 82 year: 2005 end-page: 98 ident: b6 article-title: A local-search-based heuristic for the demand-constrained multidimensional knapsack problem publication-title: INFORMS J. Comput. – volume: 42 start-page: 201 issue: 2 year: 1994 ident: 10.1016/j.cor.2024.106747_b18 article-title: Needed: An empirical science of algorithms publication-title: Oper. Res. doi: 10.1287/opre.42.2.201 – ident: 10.1016/j.cor.2024.106747_b33 doi: 10.1609/aaai.v36i9.21194 – volume: 11 start-page: 311 issue: 3 year: 1982 ident: 10.1016/j.cor.2024.106747_b23 article-title: A distribution-free approach to inducing rank correlation among input variables publication-title: Comm. Statist. Simulation Comput. doi: 10.1080/03610918208812265 – volume: 274 start-page: 35 issue: 1 year: 2019 ident: 10.1016/j.cor.2024.106747_b29 article-title: Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2018.10.001 – volume: 55 start-page: 703 issue: 4 year: 2007 ident: 10.1016/j.cor.2024.106747_b14 article-title: Performance prediction and preselection for optimization and heuristic solution procedures publication-title: Oper. Res. doi: 10.1287/opre.1070.0398 – start-page: 6150 year: 2020 ident: 10.1016/j.cor.2024.106747_b31 article-title: Generalized and scalable optimal sparse decision trees – year: 2019 ident: 10.1016/j.cor.2024.106747_b45 – volume: 46 start-page: 71 year: 2012 ident: 10.1016/j.cor.2024.106747_b30 article-title: Knapsack problems involving dimensions, demands and multiple choice constraints: generalization and transformations between formulations publication-title: Int. J. Adv. Sci. Technol. – volume: 107 start-page: 109 issue: 1 year: 2018 ident: 10.1016/j.cor.2024.106747_b36 article-title: Instance spaces for machine learning classification publication-title: Mach. Learn. doi: 10.1007/s10994-017-5629-5 – volume: 16 start-page: 239 issue: 3 year: 2010 ident: 10.1016/j.cor.2024.106747_b21 article-title: Alternating control tree search for knapsack/covering problems publication-title: J. Heuristics doi: 10.1007/s10732-008-9100-4 – volume: 33 start-page: 345 issue: 2 year: 2017 ident: 10.1016/j.cor.2024.106747_b27 article-title: Visualising forecasting algorithm performance using time series instance spaces publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2016.09.004 – year: 2024 ident: 10.1016/j.cor.2024.106747_b42 – volume: 311 start-page: 36 issue: 1 year: 2023 ident: 10.1016/j.cor.2024.106747_b25 article-title: Features for the 0-1 knapsack problem based on inclusionwise maximal solutions publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2023.04.023 – volume: 3 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.cor.2024.106747_b10 article-title: Generating bounded solutions for multi-demand multidimensional knapsack problems: a guide for operations research practitioners publication-title: Int. J. Ind. Optim. doi: 10.12928/ijio.v3i1.5073 – volume: 1 start-page: 33 issue: 1 year: 1995 ident: 10.1016/j.cor.2024.106747_b19 article-title: Testing heuristics: We have it all wrong publication-title: J. Heuristics doi: 10.1007/BF02430364 – year: 2023 ident: 10.1016/j.cor.2024.106747_b43 article-title: Verifying new instances of the multidemand multidimensional knapsack problem with instance space analysis publication-title: Comput. Oper. Res. – year: 2020 ident: 10.1016/j.cor.2024.106747_b34 – volume: 3 start-page: 530 issue: 5 year: 2008 ident: 10.1016/j.cor.2024.106747_b7 article-title: Exploiting empirical knowledge for bi-dimensional knapsack problem heuristics publication-title: Int. J. Ind. Syst. Eng. – volume: 45 start-page: 12 year: 2014 ident: 10.1016/j.cor.2024.106747_b46 article-title: Towards objective measures of algorithm performance across instance space publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.11.015 – year: 2003 ident: 10.1016/j.cor.2024.106747_b28 – volume: 39 start-page: 875 issue: 5 year: 2012 ident: 10.1016/j.cor.2024.106747_b49 article-title: Measuring instance difficulty for combinatorial optimization problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.07.006 – start-page: 21 year: 2004 ident: 10.1016/j.cor.2024.106747_b4 article-title: Landscape regularity and random walks for the job-shop scheduling problem – volume: 301 start-page: 841 issue: 3 year: 2022 ident: 10.1016/j.cor.2024.106747_b24 article-title: A new class of hard problem instances for the 0–1 knapsack problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2021.12.009 – volume: 15 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.cor.2024.106747_b37 article-title: An instance space analysis of regression problems publication-title: ACM Trans. Knowl. Discov. Data (TKDD) doi: 10.1145/3436893 – volume: 128 year: 2021 ident: 10.1016/j.cor.2024.106747_b48 article-title: Revisiting where are the hard knapsack problems? via instance space analysis publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2020.105184 – volume: 32 year: 2019 ident: 10.1016/j.cor.2024.106747_b20 article-title: Optimal sparse decision trees publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 206 issue: 5 year: 2019 ident: 10.1016/j.cor.2024.106747_b41 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0048-x – volume: 304 start-page: 411 issue: 2 year: 2023 ident: 10.1016/j.cor.2024.106747_b1 article-title: Enhanced instance space analysis for the maximum flow problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2022.04.012 – start-page: 3 year: 2007 ident: 10.1016/j.cor.2024.106747_b22 article-title: Experiments using scatter search for the multidemand multidimensional knapsack problem – volume: 25 start-page: 1 year: 2022 ident: 10.1016/j.cor.2024.106747_b9 article-title: Algorithm selection and instance space analysis for curriculum-based course timetabling publication-title: J. Sched. doi: 10.1007/s10951-021-00701-x – volume: 18 start-page: 105 issue: 2 year: 2011 ident: 10.1016/j.cor.2024.106747_b16 article-title: Test problem generation of binary knapsack problem variants and the implications of their use publication-title: Int. J. Oper. Quant. Manag. – volume: 15 start-page: 65 year: 1976 ident: 10.1016/j.cor.2024.106747_b40 article-title: The algorithm selection problem publication-title: Adv. Comput. doi: 10.1016/S0065-2458(08)60520-3 – volume: 4 start-page: 63 issue: 1 year: 1998 ident: 10.1016/j.cor.2024.106747_b8 article-title: A genetic algorithm for the multidimensional knapsack problem publication-title: J. Heuristics doi: 10.1023/A:1009642405419 – volume: 52 start-page: 1632 issue: 9 year: 2020 ident: 10.1016/j.cor.2024.106747_b32 article-title: A comprehensive empirical demonstration of the impact of choice constraints on solving generalizations of the 0–1 knapsack problem using the integer programming option of CPLEX® publication-title: Eng. Optim. doi: 10.1080/0305215X.2019.1658748 – volume: 28 start-page: 379 issue: 3 year: 2020 ident: 10.1016/j.cor.2024.106747_b35 article-title: Generating new space-filling test instances for continuous black-box optimization publication-title: Evolut. Comput. doi: 10.1162/evco_a_00262 – volume: 41 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.cor.2024.106747_b44 article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection publication-title: ACM Comput. Surv. doi: 10.1145/1456650.1456656 – volume: 21 start-page: 458 issue: 3 year: 2009 ident: 10.1016/j.cor.2024.106747_b39 article-title: Synthetic optimization problem generation: show us the correlations! publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1090.0330 – volume: 133 start-page: 3 issue: 1–3 year: 2003 ident: 10.1016/j.cor.2024.106747_b5 article-title: Discrete facility location and routing of obnoxious activities publication-title: Discrete Appl. Math. doi: 10.1016/S0166-218X(03)00431-1 – volume: 106 start-page: 1039 year: 2017 ident: 10.1016/j.cor.2024.106747_b3 article-title: Optimal classification trees publication-title: Mach. Learn. doi: 10.1007/s10994-017-5633-9 – volume: 32 start-page: 2271 issue: 9 year: 2005 ident: 10.1016/j.cor.2024.106747_b38 article-title: Where are the hard knapsack problems? publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2004.03.002 – volume: 55 start-page: 1 issue: 12 year: 2023 ident: 10.1016/j.cor.2024.106747_b50 article-title: Instance space analysis for algorithm testing: Methodology and software tools publication-title: ACM Comput. Surv. doi: 10.1145/3572895 – volume: 2 start-page: 94 issue: 1 year: 1990 ident: 10.1016/j.cor.2024.106747_b13 article-title: Computational testing: Why, how and how much publication-title: ORSA J. Comput. doi: 10.1287/ijoc.2.1.94 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.cor.2024.106747_b52 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 33 start-page: 2508 issue: 9 year: 2006 ident: 10.1016/j.cor.2024.106747_b2 article-title: Adaptive memory search for multidemand multidimensional knapsack problems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2005.07.007 – start-page: 407 year: 1996 ident: 10.1016/j.cor.2024.106747_b11 article-title: Critical event tabu search for multidimensional knapsack problems – volume: 54 start-page: 894 issue: 5 year: 2022 ident: 10.1016/j.cor.2024.106747_b51 article-title: When to use Integer Programming Software to solve large multi-demand multidimensional knapsack problems: a guide for operations research practitioners publication-title: Eng. Optim. doi: 10.1080/0305215X.2021.1933965 – year: 2006 ident: 10.1016/j.cor.2024.106747_b12 – volume: 34 start-page: 309 issue: 2 year: 2020 ident: 10.1016/j.cor.2024.106747_b26 article-title: On normalization and algorithm selection for unsupervised outlier detection publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-019-00661-z – volume: 63 start-page: 102 year: 2015 ident: 10.1016/j.cor.2024.106747_b47 article-title: Generating new test instances by evolving in instance space publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.04.022 – volume: 17 start-page: 82 issue: 1 year: 2005 ident: 10.1016/j.cor.2024.106747_b6 article-title: A local-search-based heuristic for the demand-constrained multidimensional knapsack problem publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1030.0050 – volume: 39 start-page: 19 issue: 1 year: 2012 ident: 10.1016/j.cor.2024.106747_b15 article-title: Problem reduction heuristic for the 0–1 multidimensional knapsack problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.06.009 – volume: 46 start-page: 302 issue: 2 year: 2000 ident: 10.1016/j.cor.2024.106747_b17 article-title: The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance publication-title: Manage. Sci. doi: 10.1287/mnsc.46.2.302.11930 |
| SSID | ssj0000721 |
| Score | 2.4667504 |
| Snippet | The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106747 |
| SubjectTerms | Algorithm selection problem Instance space analysis Metaheuristics Multidemand multidimensional knapsack problem |
| Title | Applying instance space analysis for metaheuristic selection to the 0–1 multidemand multidimensional knapsack problem |
| URI | https://dx.doi.org/10.1016/j.cor.2024.106747 |
| Volume | 170 |
| WOSCitedRecordID | wos001271441400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000721 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JjtNAEG2FDELMgSWAGDb1gROWI-_dPkYoCEZohIZBys3qtjtiljhR4tlu_AO_wVfxJVS5l3gCg5gDF8vy0rFSr7tfV1e9IuS1nELvEwzWJgqGwCSTmc8jIX0J5DSF3ldNI11sgu3t8ckk_9Tr_bC5MGcnrK75xUW--K-mhmtgbEydvYG5XaNwAc7B6HAEs8PxnwyPvPJSZ6og80MJWVgX4y6BkR_BwMKZasRXdaplmr1VWwwHgWCYaGBjIOJQhxxWaoYedn2OBQG0mId3XIvFSpTHnilM0-W6tmDEqoXXfKGWJuzOCAw5R_RnBI6Gjik_7o2Ha5-43hjZF5czzLXZd3c-tkksGqA4TO26O6Z4cotbbzTsejaixMXIuYwuDCxMtRKnG611nREz3qIAnlbs_G0q0F6JI7Akyr5GyXD97FXZ7Y3p0AUp2vi3owKaKLCJQjdxi2xFLM15n2yNPownu-uZn7V5fu677S56G0-48R1_5kEdbnPwgNwzixI60mB6SHqqHpA7NidiQO5bU1IzFQzIdkfI8hE5t6CjFnS0BR21oKMAOnoFdNSBjjZzCkanwc9v30PagRvdhBu1cKMGbo_Jl3fjg7fvfVPSwy9h5mh8xcsyqTju9YkpcMmAiVSWgchEIpUSYZZKFsgwYjJJK-BReVgGmeI85sBzWSbjJ6Rfz2v1lNAwjqtpXrFIhpgcLWTComwqGVeBSpM83iGB_YOL0ujdY9mVk-Jaw-6QN-6VhRZ7-dvDibVaYdiqZqEFIPD6157d5Deek7vrjvGC9JvlqXpJbpdnzeFq-crA7xdJMbcU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+instance+space+analysis+for+metaheuristic+selection+to+the+0%E2%80%931+multidemand+multidimensional+knapsack+problem&rft.jtitle=Computers+%26+operations+research&rft.au=Scherer%2C+Matthew+E.&rft.au=Hill%2C+Raymond+R.&rft.au=Lunday%2C+Brian+J.&rft.au=Cox%2C+Bruce+A.&rft.date=2024-10-01&rft.issn=0305-0548&rft.volume=170&rft.spage=106747&rft_id=info:doi/10.1016%2Fj.cor.2024.106747&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2024_106747 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |