A new framework for sharp and efficient resolution of NCSP with manifolds of solutions

When numerical CSPs are used to solve systems of n equations with n variables, the preconditioned interval Newton operator plays two key roles: First it allows handling the n equations as a global constraint, hence achieving a powerful contraction. Second it can prove rigorously the existence of sol...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Constraints : an international journal Ročník 15; číslo 2; s. 190 - 212
Hlavní autoři: Goldsztejn, Alexandre, Granvilliers, Laurent
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.04.2010
Springer Verlag
Témata:
ISSN:1383-7133, 1572-9354
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:When numerical CSPs are used to solve systems of n equations with n variables, the preconditioned interval Newton operator plays two key roles: First it allows handling the n equations as a global constraint, hence achieving a powerful contraction. Second it can prove rigorously the existence of solutions. However, none of these advantages can be used for under-constrained systems of equations, which have manifolds of solutions. A new framework is proposed in this paper to extend the advantages of the preconditioned interval Newton to under-constrained systems of equations. This is achieved simply by allowing domains of the NCSP to be parallelepipeds, which generalize the boxes usually used as domains.
ISSN:1383-7133
1572-9354
DOI:10.1007/s10601-009-9082-3