Finding Branch-Decompositions and Rank-Decompositions
We present a new algorithm that can output the rank-decomposition of width at most $k$ of a graph if such exists. For that we use an algorithm that, for an input matroid represented over a fixed finite field, outputs its branch-decomposition of width at most $k$ if such exists. This algorithm works...
Uloženo v:
| Vydáno v: | SIAM journal on computing Ročník 38; číslo 3; s. 1012 - 1032 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2008
|
| Témata: | |
| ISSN: | 0097-5397, 1095-7111 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a new algorithm that can output the rank-decomposition of width at most $k$ of a graph if such exists. For that we use an algorithm that, for an input matroid represented over a fixed finite field, outputs its branch-decomposition of width at most $k$ if such exists. This algorithm works also for partitioned matroids. Both of these algorithms are fixed-parameter tractable, that is, they run in time $O(n^3)$ where $n$ is the number of vertices / elements of the input, for each constant value of $k$ and any fixed finite field. The previous best algorithm for construction of a branch-decomposition or a rank-decomposition of optimal width due to Oum and Seymour [J. Combin. Theory Ser. B, 97 (2007), pp. 385-393] is not fixed-parameter tractable. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0097-5397 1095-7111 |
| DOI: | 10.1137/070685920 |