A Deterministic Algorithm for Finding All Minimum k ‐Way Cuts
Let $G=(V,E)$ be an edge-weighted undirected graph with $n$ vertices and $m$ edges. We present a deterministic algorithm to compute a minimum $k$-way cut of $G$ for a given $k$. Our algorithm is a divide-and-conquer method based on a procedure that reduces an instance of the minimum $k$-way cut prob...
Uloženo v:
| Vydáno v: | SIAM journal on computing Ročník 36; číslo 5; s. 1329 - 1341 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2006
|
| Témata: | |
| ISSN: | 0097-5397, 1095-7111 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let $G=(V,E)$ be an edge-weighted undirected graph with $n$ vertices and $m$ edges. We present a deterministic algorithm to compute a minimum $k$-way cut of $G$ for a given $k$. Our algorithm is a divide-and-conquer method based on a procedure that reduces an instance of the minimum $k$-way cut problem to $O(n^{2k-5})$ instances of the minimum $(\lfloor (k+\sqrt{k})/2\rfloor+1)$-way cut problem, and can be implemented to run in $O(n^{4k/(1-1.71/\sqrt{k}) -31} )$ time. With a slight modification, the algorithm can find all minimum $k$-way cuts in $O(n^{4k/(1-1.71/\sqrt{k}) -16} )$ time. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0097-5397 1095-7111 |
| DOI: | 10.1137/050631616 |