A Deterministic Algorithm for Finding All Minimum k ‐Way Cuts

Let $G=(V,E)$ be an edge-weighted undirected graph with $n$ vertices and $m$ edges. We present a deterministic algorithm to compute a minimum $k$-way cut of $G$ for a given $k$. Our algorithm is a divide-and-conquer method based on a procedure that reduces an instance of the minimum $k$-way cut prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing Jg. 36; H. 5; S. 1329 - 1341
Hauptverfasser: Kamidoi, Yoko, Yoshida, Noriyoshi, Nagamochi, Hiroshi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2006
Schlagworte:
ISSN:0097-5397, 1095-7111
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G=(V,E)$ be an edge-weighted undirected graph with $n$ vertices and $m$ edges. We present a deterministic algorithm to compute a minimum $k$-way cut of $G$ for a given $k$. Our algorithm is a divide-and-conquer method based on a procedure that reduces an instance of the minimum $k$-way cut problem to $O(n^{2k-5})$ instances of the minimum $(\lfloor (k+\sqrt{k})/2\rfloor+1)$-way cut problem, and can be implemented to run in $O(n^{4k/(1-1.71/\sqrt{k}) -31} )$ time. With a slight modification, the algorithm can find all minimum $k$-way cuts in $O(n^{4k/(1-1.71/\sqrt{k}) -16} )$ time.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/050631616