Comprehensive Overview of Backpropagation Algorithm for Digital Image Denoising

Artificial ANNs (ANNs) are relatively new computational tools used in the development of intelligent systems, some of which are inspired by biological ANNs, and have found widespread application in the solving of a variety of complex real-world problems. It boasts enticing features as well as remark...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 11; no. 10; p. 1590
Main Authors: Singh, Abha, Kushwaha, Sumit, Alarfaj, Maryam, Singh, Manoj
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.05.2022
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial ANNs (ANNs) are relatively new computational tools used in the development of intelligent systems, some of which are inspired by biological ANNs, and have found widespread application in the solving of a variety of complex real-world problems. It boasts enticing features as well as remarkable data processing capabilities. In this paper, a comprehensive overview of the backpropagation algorithm for digital image denoising was discussed. Then, we presented a probabilistic analysis of how different algorithms address this challenge, arguing that small ANNs can denoise small-scale texture patterns almost as effectively as their larger equivalents. The results also show that self-similarity and ANNs are complementary paradigms for patch denoising, as demonstrated by an algorithm that effectively complements BM3D with small ANNs, surpassing BM3D at a low cost. Here, one of the most significant advantages of this learning technique is that, once taught, digital images may be recovered without prior knowledge of the degradation model (noise/blurring) that caused the digital image to become distorted.
AbstractList Artificial ANNs (ANNs) are relatively new computational tools used in the development of intelligent systems, some of which are inspired by biological ANNs, and have found widespread application in the solving of a variety of complex real-world problems. It boasts enticing features as well as remarkable data processing capabilities. In this paper, a comprehensive overview of the backpropagation algorithm for digital image denoising was discussed. Then, we presented a probabilistic analysis of how different algorithms address this challenge, arguing that small ANNs can denoise small-scale texture patterns almost as effectively as their larger equivalents. The results also show that self-similarity and ANNs are complementary paradigms for patch denoising, as demonstrated by an algorithm that effectively complements BM3D with small ANNs, surpassing BM3D at a low cost. Here, one of the most significant advantages of this learning technique is that, once taught, digital images may be recovered without prior knowledge of the degradation model (noise/blurring) that caused the digital image to become distorted.
Author Alarfaj, Maryam
Singh, Abha
Kushwaha, Sumit
Singh, Manoj
Author_xml – sequence: 1
  givenname: Abha
  orcidid: 0000-0003-2706-5982
  surname: Singh
  fullname: Singh, Abha
– sequence: 2
  givenname: Sumit
  orcidid: 0000-0002-3830-1736
  surname: Kushwaha
  fullname: Kushwaha, Sumit
– sequence: 3
  givenname: Maryam
  surname: Alarfaj
  fullname: Alarfaj, Maryam
– sequence: 4
  givenname: Manoj
  surname: Singh
  fullname: Singh, Manoj
BookMark eNp9kE1PAjEQhhuDiYj8Ai9NPK9O2_2gRwQ_SEi46HlTynQp7rZru2D89y7BgzHGucwk8z7z8V6SgfMOCblmcCuEhDusUXfBO6sjYwxYJuGMDDkUMpFc8sGP-oKMY9xBH5KJiYAhWc180wbcoov2gHR1wHCw-EG9ofdKv7XBt6pSnfWOTuvKB9ttG2p8oHNb2U7VdNGoCukcnbfRuuqKnBtVRxx_5xF5fXx4mT0ny9XTYjZdJlpw3iVCa5S6MDoFk6cqV_kaFCsyJY3mAJncCM1RbdJMZ2vI1KRvQAZQMJykm1SLEbk5ze0vfN9j7Mqd3wfXryx5XgDjKRRFrxInlQ4-xoCmbINtVPgsGZRH88o_zOsp-YvS_atHD7qgbP0v-wV5nnu0
CitedBy_id crossref_primary_10_3390_electronics14010145
crossref_primary_10_1109_ACCESS_2024_3398786
crossref_primary_10_3390_app13085102
crossref_primary_10_3390_en17163932
crossref_primary_10_3390_rs15123095
crossref_primary_10_3390_electronics13040746
crossref_primary_10_3390_en18020299
crossref_primary_10_1364_OE_549904
crossref_primary_10_1007_s10668_023_04257_y
crossref_primary_10_1177_14604582241295912
crossref_primary_10_1111_ijfs_17298
crossref_primary_10_3390_app13031837
crossref_primary_10_3390_ph16111509
crossref_primary_10_3390_math11132975
crossref_primary_10_1007_s40819_025_01865_2
crossref_primary_10_1016_j_asoc_2023_110958
crossref_primary_10_1088_2515_7620_ad8109
crossref_primary_10_3390_mi13101644
crossref_primary_10_1142_S0219467825500160
crossref_primary_10_1007_s00530_024_01284_1
crossref_primary_10_3390_info14090507
crossref_primary_10_1142_S0219467825500329
crossref_primary_10_1007_s43217_023_00124_y
crossref_primary_10_1016_j_mser_2025_101095
crossref_primary_10_1016_j_eswa_2025_128351
crossref_primary_10_3390_su15129623
crossref_primary_10_3390_math11102260
Cites_doi 10.13005/bpj/1240
10.1109/TIP.2010.2073477
10.1007/s10278-018-0110-y
10.3390/rs13142771
10.1016/j.neunet.2019.04.024
10.2174/1573405614666180801113345
10.1109/TCSVT.2019.2951778
10.1016/j.isatra.2019.11.008
10.1109/TIP.2022.3162961
10.1007/3-540-49430-8_2
10.1109/79.581363
10.1109/CVPR.2011.5995309
10.1049/iet-ipr.2019.0157
10.13005/bpj/1175
10.1016/S0167-7012(00)00201-3
10.21236/AD0256582
10.1515/bmt-2018-0101
10.1109/ACCESS.2019.2930319
10.13005/bpj/1171
10.1002/9780470512517
10.1117/1.JEI.28.1.013011
10.1109/LGRS.2020.2993899
10.1109/TIP.2006.881969
10.4066/biomedicalresearch.29-18-853
10.3390/app11209616
10.1007/s10044-019-00845-9
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics11101590
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics11101590
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-3cce9c7fc40f64a6a6b0a175a9fc20059d3c2ead45c5b05a8a9f050071e84d4c3
IEDL.DBID PIMPY
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802459600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Fri Jul 25 08:36:44 EDT 2025
Tue Nov 18 20:58:03 EST 2025
Sat Nov 29 07:10:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-3cce9c7fc40f64a6a6b0a175a9fc20059d3c2ead45c5b05a8a9f050071e84d4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3830-1736
0000-0003-2706-5982
OpenAccessLink https://www.proquest.com/publiccontent/docview/2670124077?pq-origsite=%requestingapplication%
PQID 2670124077
PQPubID 2032404
ParticipantIDs proquest_journals_2670124077
crossref_primary_10_3390_electronics11101590
crossref_citationtrail_10_3390_electronics11101590
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Protter (ref_10) 2010; 18
Yang (ref_2) 2019; 7
Thakur (ref_4) 2019; 13
Kushwaha (ref_33) 2015; 3
Banhom (ref_1) 1997; 14
ref_13
ref_35
ref_12
Kushwaha (ref_26) 2016; 4
ref_32
Bouwmans (ref_5) 2019; 117
ref_31
Zhang (ref_7) 2021; 18
Zhang (ref_8) 2022; 19
ref_18
ref_39
Kushwaha (ref_22) 2017; 10
Deepa (ref_23) 2013; 2013
Dao (ref_37) 2002; 10
Kushwaha (ref_16) 2019; 64
Kumar (ref_38) 2020; 16
Lim (ref_34) 2020; 23
Zeng (ref_27) 2019; 28
Elad (ref_14) 2006; 15
ref_24
Kushwaha (ref_25) 2017; 10
Kushwaha (ref_20) 2017; 10
Zhang (ref_6) 2022; 60
ref_21
Zhao (ref_28) 2022; 31
ref_40
Kushwaha (ref_9) 2015; 3
Zhao (ref_11) 2020; 30
Luisier (ref_19) 2011; 20
Asokan (ref_30) 2020; 100
ref_3
Basheer (ref_29) 2000; 43
Kushwaha (ref_17) 2018; 29
Chang (ref_36) 2019; 32
Kushwaha (ref_15) 2022; 35
References_xml – volume: 10
  start-page: 1355
  year: 2017
  ident: ref_20
  article-title: An Efficient Filtering Approach for Speckle Reduction in Ultrasound Images
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/1240
– volume: 20
  start-page: 696
  year: 2011
  ident: ref_19
  article-title: Image denoising in mixed poisson—gaussian noise
  publication-title: IEEE Trans. Image Process. (TIP)
  doi: 10.1109/TIP.2010.2073477
– ident: ref_32
– ident: ref_3
– volume: 32
  start-page: 148
  year: 2019
  ident: ref_36
  article-title: An Automatic Parameter Decision System of Bilateral Filtering with GPU-Based Acceleration for Brain MR Images
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0110-y
– ident: ref_12
  doi: 10.3390/rs13142771
– volume: 18
  start-page: 842
  year: 2010
  ident: ref_10
  article-title: Image Sequence Denoising via Sparse and Redundant Representations
  publication-title: IEEE Trans. Image Process.
– volume: 117
  start-page: 8
  year: 2019
  ident: ref_5
  article-title: Deep neural network concepts for background subtraction:A systematic review and comparative evaluation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.04.024
– volume: 16
  start-page: 278
  year: 2020
  ident: ref_38
  article-title: A Comprehensive Review on Nature Inspired Neural Network based Adaptive Filter for Eliminating Noise in Medical Images
  publication-title: Curr. Med. Imaging
  doi: 10.2174/1573405614666180801113345
– volume: 3
  start-page: 15
  year: 2015
  ident: ref_33
  article-title: Study and Analysis of Various Image Enhancement Method using MATLAB
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 4
  start-page: 152
  year: 2016
  ident: ref_26
  article-title: Mathematical Analysis of Robust Anisotropic Diffusion Filter for Ultrasound Images
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 30
  start-page: 4192
  year: 2020
  ident: ref_11
  article-title: Dynamic Deep Pixel Distribution Learning for Background Subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2951778
– volume: 100
  start-page: 308
  year: 2020
  ident: ref_30
  article-title: Adaptive Cuckoo Search based optimal bilateral filtering for denoising of satellite images
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.11.008
– volume: 31
  start-page: 2934
  year: 2022
  ident: ref_28
  article-title: Universal Background Subtraction Based on Arithmetic Distribution Neural Network
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3162961
– ident: ref_18
– ident: ref_35
– ident: ref_13
  doi: 10.1007/3-540-49430-8_2
– volume: 2013
  start-page: 11
  year: 2013
  ident: ref_23
  article-title: Review on methods to fix number of hidden neurons in ANNs
  publication-title: Math. Probl. Eng.
– volume: 3
  start-page: 2347
  year: 2015
  ident: ref_9
  article-title: Study of Various Image Noises and Their Behavior
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 14
  start-page: 24
  year: 1997
  ident: ref_1
  article-title: Digital Image Denoising
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.581363
– ident: ref_21
  doi: 10.1109/CVPR.2011.5995309
– volume: 10
  start-page: 201
  year: 2002
  ident: ref_37
  article-title: A performance comparison of different back propagation ANNs methods in computer network intrusion detection
  publication-title: Differ. Equ. Dyn. Syst.
– volume: 13
  start-page: 2367
  year: 2019
  ident: ref_4
  article-title: State-of-art analysis of image denoising methods using convolutional neural networks
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.0157
– volume: 10
  start-page: 837
  year: 2017
  ident: ref_22
  article-title: Performance Comparison of Different Despeckled Filters for Ultrasound Images
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/1175
– ident: ref_31
– volume: 43
  start-page: 3
  year: 2000
  ident: ref_29
  article-title: Artificial ANNs: Fundamentals, computing, design, and application
  publication-title: ELSEVIER J. Microbiol. Methods
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 19
  start-page: 4019905
  year: 2022
  ident: ref_8
  article-title: Squeeze-and-Excitation Laplacian Pyramid Network with Dual-Polarization Feature Fusion for Ship Classification in SAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_24
  doi: 10.21236/AD0256582
– volume: 64
  start-page: 601
  year: 2019
  ident: ref_16
  article-title: Optimization of the proposed hybrid denoising technique to overcome over-filtering issue
  publication-title: Biomed. Eng. Biomed. Tech.
  doi: 10.1515/bmt-2018-0101
– volume: 7
  start-page: 97949
  year: 2019
  ident: ref_2
  article-title: End-to-End Background Subtraction via a Multi-Scale Spatio-Temporal Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2930319
– volume: 10
  start-page: 805
  year: 2017
  ident: ref_25
  article-title: An Efficient Approach for Denoising Ultrasound Images using Anisotropic Diffusion and Teaching Learning Based Optimization
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/1171
– ident: ref_39
  doi: 10.1002/9780470512517
– volume: 28
  start-page: 013011
  year: 2019
  ident: ref_27
  article-title: Combining background subtraction algorithms with convolutional neural network
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.28.1.013011
– volume: 18
  start-page: 1234
  year: 2021
  ident: ref_7
  article-title: ShipDeNet-20: An Only 20 Convolution Layers and <1-MB Lightweight SAR Ship Detector
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2993899
– volume: 15
  start-page: 3736
  year: 2006
  ident: ref_14
  article-title: Image Denoising Via Sparse and Redundant Representations over Learned Dictionaries
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881969
– volume: 35
  start-page: 105
  year: 2022
  ident: ref_15
  article-title: IoT with AI: Requirements and Challenges
  publication-title: Gorteria
– volume: 29
  start-page: 3444
  year: 2018
  ident: ref_17
  article-title: Robust denoising technique for ultrasound images by splicing of low rank filter and principal component analysis
  publication-title: Biomed. Res.
  doi: 10.4066/biomedicalresearch.29-18-853
– ident: ref_40
  doi: 10.3390/app11209616
– volume: 60
  start-page: 5210322
  year: 2022
  ident: ref_6
  article-title: HOG-ShipCLSNet: A Novel Deep Learning Network with HOG Feature Fusion for SAR Ship Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 23
  start-page: 1369
  year: 2020
  ident: ref_34
  article-title: Learning multi-scale features for foreground segmentation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00845-9
SSID ssj0000913830
Score 2.4355185
Snippet Artificial ANNs (ANNs) are relatively new computational tools used in the development of intelligent systems, some of which are inspired by biological ANNs,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1590
SubjectTerms Algorithms
Back propagation
Blurring
Data processing
Digital imaging
Neural networks
Neurons
Noise
Noise reduction
Probabilistic analysis
Self-similarity
Signal processing
Software
Title Comprehensive Overview of Backpropagation Algorithm for Digital Image Denoising
URI https://www.proquest.com/docview/2670124077
Volume 11
WOSCitedRecordID wos000802459600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLbYxgEOvBHjMeXAkWolfZ_QBkMgwagQoMGlStNkTLAH2xg3fjt228GQ0E5cekkfUW1_dhznM8DhsRaWpbkwfK4Sw0YnYsR-wI1YC5lQSM5T4vmHK6_Z9FutIMyPR4_yssopJqZAnbE9U902gnA16UvKmFe56yGy4mLEOxm8GdRDivZa84YaBSgR8RYvQim8vA4fv3MuxIHpW2ZGPmThar_602tmhEaPrpGwedZB_cbn1Omcr_7vdNdgJQ8-WS3TlnVYUL0NWJ6hJNyEGwKIoXrO6trZzYSwRH2wvmZ1IV9wFohAqTRZ7bWN3xg_dxkGvuys06b-I-yyiwjFzlSv36E0xBbcnzfuTi-MvOmCIdG2x4YlpQqkp6VtatcWrnBjU2CMIQItKQMVJJbkqH62I53YdISPA6ZDkYry7cSW1jYUe_2e2gEWc6VMIbQUSuGb3DhAfYkD31Eej7XrlIFP_3Qkc0ZyaozxGuHKhMQT_SGeMhx9PzTICDnm374_lU-UW-co-hHH7vzhPVjidNwhLXDch-J4-K4OYFFOxp3RsAKleqMZ3lagcP3ZwGvoPFVylfsCO77pnw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQQIO7Iiy-gA3ogZnPyAEFERFKRwKqrgEx7GhohttKeKn-EZmkoZFQtx64GzH0thPb5bYbwB29rWwLM2F4XMVGzY6ESPyA25EWsiYQnKeCM_flr1Kxa_VgusxeM_ewtC1yowTE6KO25Jq5AXuesilmH54h51ng7pG0d_VrIVGCosL9faKKVvvoFTE893l_Oy0enJuDLsKGBLB2zcsKVUgPS1tU7u2cIUbmQKdqAi0pBJLEFuS4_7ajnQi0xE-DpgOuWLl27EtLVx3HCZsm5uk1X_t3H3WdEhj07fMVNzIsgKz8NXLpoekgq6XuP-7A_zJ_4lTO5v7b9sxD7PD8JkdpXhfgDHVWoSZb6KKS3BFFNdVj-nNfHY1IDZUr6yt2bGQT2gncmiCR3bUeECb-o9NhqE7K9YfqIMKKzWRY1lRtdp1KqQsw81ILFqBXKvdUqvAIq6UKYSWQilcyY0CRHwU-I7yeKRdJw88O8tQDjXVqbVHI8TcigAQ_gKAPOx9ftRJJUX-nr6RISAc8ksv_Dr-tb-Ht2HqvHpZDsulysU6THN6vJFc19yAXL_7ojZhUg769V53K4Eyg_tRg-UDeRk3Bg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TgMxEB1xCUHBjTgCuICOVRbvXSAUCBFRUEgBCNEsXq8dIshBEkD8Gl_HzB4EJERHQW2vJdvP73lmxzMAuwdaWJbmwvC5ig0bRcSI_IAbkRYypis5TxLPX5979bp_cxM0xuA9fwtDYZU5JyZEHXcl-ciL3PWQS9H88Io6C4tolCtHvSeDKkjRn9a8nEYKkZp6e0XzbXBYLeNe73FeOb08OTOyCgOGRCAPDUtKFUhPS9vUri1c4UamQEEVgZbkbgliS3Jca9uRTmQ6wscG0yFZVr4d29LCccdh0iMbE89Sw7n99O9Qvk3fMtNER5YVmMVRXZsBEgzKMOnAVzH8rgWJwFXm__PSLMBcdq1mpfQcLMKY6izB7Jdki8twQdTXV_dpxD67eCGWVK-sq9mxkA84Z-TWBKes9NjEOQ3v2wyv9KzcalJlFVZtI_eysup0W-RgWYGrP5nRKkx0uh21BiziSplCaCmUwpHcKMCTEAW-ozweaddZB57vayizXOtU8uMxRJuLwBD-AIZ12P_8qJemGvm9eyFHQ5jxziAcQWHj9-YdmEaMhOfVem0TZji96UiiOAswMew_qy2Yki_D1qC_naCawd1fY-UDPLA_0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Overview+of+Backpropagation+Algorithm+for+Digital+Image+Denoising&rft.jtitle=Electronics+%28Basel%29&rft.au=Singh%2C+Abha&rft.au=Kushwaha%2C+Sumit&rft.au=Alarfaj%2C+Maryam&rft.au=Singh%2C+Manoj&rft.date=2022-05-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=10&rft.spage=1590&rft_id=info:doi/10.3390%2Felectronics11101590&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11101590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon