Fast algorithms for maximizing the minimum eigenvalue in fixed dimension

In the minimum eigenvalue problem, we are given a collection of vectors in Rd, and the goal is to pick a subset B to maximize the minimum eigenvalue of the matrix ∑i∈Bvivi⊤. We give a O(nO(dlog⁡(d)/ϵ2))-time randomized algorithm that finds an assignment subject to a partition constraint whose minimu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 57; s. 107186
Hlavní autoři: Brown, Adam, Laddha, Aditi, Singh, Mohit
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2024
Témata:
ISSN:0167-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the minimum eigenvalue problem, we are given a collection of vectors in Rd, and the goal is to pick a subset B to maximize the minimum eigenvalue of the matrix ∑i∈Bvivi⊤. We give a O(nO(dlog⁡(d)/ϵ2))-time randomized algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least (1−ϵ) times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem.
ISSN:0167-6377
DOI:10.1016/j.orl.2024.107186