Fast algorithms for maximizing the minimum eigenvalue in fixed dimension
In the minimum eigenvalue problem, we are given a collection of vectors in Rd, and the goal is to pick a subset B to maximize the minimum eigenvalue of the matrix ∑i∈Bvivi⊤. We give a O(nO(dlog(d)/ϵ2))-time randomized algorithm that finds an assignment subject to a partition constraint whose minimu...
Uloženo v:
| Vydáno v: | Operations research letters Ročník 57; s. 107186 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.11.2024
|
| Témata: | |
| ISSN: | 0167-6377 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the minimum eigenvalue problem, we are given a collection of vectors in Rd, and the goal is to pick a subset B to maximize the minimum eigenvalue of the matrix ∑i∈Bvivi⊤. We give a O(nO(dlog(d)/ϵ2))-time randomized algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least (1−ϵ) times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem. |
|---|---|
| ISSN: | 0167-6377 |
| DOI: | 10.1016/j.orl.2024.107186 |