Within-regime volatility dynamics for observable- and Markov-switching score-driven models

We study the novel Markov-switching (MS) Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model, using within-regime volatility dynamics, similar to the recent observable-switching (OS) Beta-t-EGARCH model. We report in-sample results on the Standard & Poor’s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Finance research letters Ročník 73; s. 106631
Hlavní autori: Blazsek, Szabolcs, Kong, Dejun, Shadoff, Samantha R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.03.2025
Predmet:
ISSN:1544-6123
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the novel Markov-switching (MS) Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model, using within-regime volatility dynamics, similar to the recent observable-switching (OS) Beta-t-EGARCH model. We report in-sample results on the Standard & Poor’s 500 (S&P 500) and a random sample of 50 firms from the S&P 500 from March 1986 to July 2024. We compare the out-of-sample forecasting performances of OS-Beta-t-EGARCH and MS-Beta-t-EGARCH from May 2005 to July 2024 and confirm that OS-Beta-t-EGARCH is superior to MS-Beta-t-EGARCH. •The performances of observable- and Markov-switching volatility models are compared.•All econometric models in this paper are score-driven times series models.•We use data on the S&P 500 index and 50 randomly selected stocks from the S&P 500.•Observable-switching is superior to Markov-switching both in- and out-of-sample.
ISSN:1544-6123
DOI:10.1016/j.frl.2024.106631