Application of the generalized finite difference method to three-dimensional transient electromagnetic problems
We apply the generalized finite difference method (GFDM), a relatively new domain-type meshless method, for the numerical solution of three-dimensional (3D) transient electromagnetic problems. The method combines Taylor series expansions and the weighted moving least-squares method. The main idea he...
Uloženo v:
| Vydáno v: | Engineering analysis with boundary elements Ročník 92; s. 257 - 266 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.07.2018
|
| Témata: | |
| ISSN: | 0955-7997, 1873-197X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We apply the generalized finite difference method (GFDM), a relatively new domain-type meshless method, for the numerical solution of three-dimensional (3D) transient electromagnetic problems. The method combines Taylor series expansions and the weighted moving least-squares method. The main idea here is to inherit the high-accuracy advantage of the former and the stability and meshless attributes of the latter. This makes the method particularly attractive for problems defined in 3D complex geometries. Three benchmark 3D problems governed by the Maxwell's equations with both smooth and piecewise smooth geometries have been analyzed. The convergence, accuracy and stability of the method with respect to increasing the number of scattered nodes inside the domain are studied. |
|---|---|
| ISSN: | 0955-7997 1873-197X |
| DOI: | 10.1016/j.enganabound.2017.08.015 |