Lossy Joint Source-Channel Coding in the Finite Blocklength Regime

This paper finds new tight finite-blocklength bounds for the best achievable lossy joint source-channel code rate, and demonstrates that joint source-channel code design brings considerable performance advantage over a separate one in the nonasymptotic regime. A joint source-channel code maps a bloc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 59; H. 5; S. 2545 - 2575
Hauptverfasser: Kostina, V., Verdu, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.05.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper finds new tight finite-blocklength bounds for the best achievable lossy joint source-channel code rate, and demonstrates that joint source-channel code design brings considerable performance advantage over a separate one in the nonasymptotic regime. A joint source-channel code maps a block of k source symbols onto a length- n channel codeword, and the fidelity of reproduction at the receiver end is measured by the probability ε that the distortion exceeds a given threshold d . For memoryless sources and channels, it is demonstrated that the parameters of the best joint source-channel code must satisfy nC - kR ( d ) ≈ √( nV + k V ( d )) Q -1 (ε), where C and V are the channel capacity and channel dispersion, respectively; R ( d ) and V ( d ) are the source rate-distortion and rate-dispersion functions; and Q is the standard Gaussian complementary cumulative distribution function. Symbol-by-symbol (uncoded) transmission is known to achieve the Shannon limit when the source and channel satisfy a certain probabilistic matching condition. In this paper, we show that even when this condition is not satisfied, symbol-by-symbol transmission is, in some cases, the best known strategy in the nonasymptotic regime.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2013.2238657