Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques

•Twenty Machine Learning (ML) algorithms implemented in Python software to predict fracture load and fracture toughness in three modes.•For fracture load, the algorithms of XGBoost, BRegressor, GBM, ERTRegressor (mode I), XGBoost, GBM, ETRegressor, ERTRegressor (mode II), and BRegressor, GBM, ETRegr...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics Vol. 276; p. 108914
Main Authors: Dehestani, A., Kazemi, F., Abdi, R., Nitka, M.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2022
Subjects:
ISSN:0013-7944, 1873-7315
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Twenty Machine Learning (ML) algorithms implemented in Python software to predict fracture load and fracture toughness in three modes.•For fracture load, the algorithms of XGBoost, BRegressor, GBM, ERTRegressor (mode I), XGBoost, GBM, ETRegressor, ERTRegressor (mode II), and BRegressor, GBM, ETRegressor (mixed-mode) had the highest prediction accuracy.•For fracture toughness, the algorithms of BRegressor, ETRegressor, NuSVR, ANNs (mode I), ANNs (mode II), and XGBoost, RDF, BRegressor, ETRegressor, ERTRegressor, ANNs (mixed-mode) had the highest prediction accuracy.•Graphical User Interface (GUI) was developed for fracture prediction. Machine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian discs with central cracks” were used as a training and testing dataset. The main features of the experimental technique in each specimen are the fracture mode, the tensile strength of the specimen, the inclination of the crack with loading direction, the thickness of specimens and the half-length of the crack. The improved ML algorithms were implemented using Python programming language. The results of the coefficient of restitution (R2) and statistical metrics confirm that the ML algorithms are able to predict the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) with high accuracy. To validate the reliability of the proposed ML-based prediction models, three experimental tests were used. Moreover, the Graphical User Interface (GUI) of the ML-based models was created as a practical tool for estimating the fracture load and fracture toughness for engineering problems.
AbstractList •Twenty Machine Learning (ML) algorithms implemented in Python software to predict fracture load and fracture toughness in three modes.•For fracture load, the algorithms of XGBoost, BRegressor, GBM, ERTRegressor (mode I), XGBoost, GBM, ETRegressor, ERTRegressor (mode II), and BRegressor, GBM, ETRegressor (mixed-mode) had the highest prediction accuracy.•For fracture toughness, the algorithms of BRegressor, ETRegressor, NuSVR, ANNs (mode I), ANNs (mode II), and XGBoost, RDF, BRegressor, ETRegressor, ERTRegressor, ANNs (mixed-mode) had the highest prediction accuracy.•Graphical User Interface (GUI) was developed for fracture prediction. Machine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian discs with central cracks” were used as a training and testing dataset. The main features of the experimental technique in each specimen are the fracture mode, the tensile strength of the specimen, the inclination of the crack with loading direction, the thickness of specimens and the half-length of the crack. The improved ML algorithms were implemented using Python programming language. The results of the coefficient of restitution (R2) and statistical metrics confirm that the ML algorithms are able to predict the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) with high accuracy. To validate the reliability of the proposed ML-based prediction models, three experimental tests were used. Moreover, the Graphical User Interface (GUI) of the ML-based models was created as a practical tool for estimating the fracture load and fracture toughness for engineering problems.
ArticleNumber 108914
Author Abdi, R.
Kazemi, F.
Dehestani, A.
Nitka, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Dehestani
  fullname: Dehestani, A.
  organization: Department of Mining Engineering, Imam Khomeini International University, Qazvin, Iran
– sequence: 2
  givenname: F.
  surname: Kazemi
  fullname: Kazemi, F.
  organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
– sequence: 3
  givenname: R.
  surname: Abdi
  fullname: Abdi, R.
  organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
– sequence: 4
  givenname: M.
  surname: Nitka
  fullname: Nitka, M.
  email: micnitka@pg.edu.pl
  organization: Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
BookMark eNqNkE1rGzEQhkVwIM7Hf1DvWVfa1X7oVIpp04IhPTRnoZ0d2XJtqR1pDc2vzy7uoeTk0wwzzMO8zy1bhBiQsQ9SrKSQzcf9CsPWkYUjwm5VirKc5p2W6ootZddWRVvJesGWQsip10rdsNuU9kKItunEkr3-IBw8ZB8Dj47PpDwS8hzH7S5gStwH7nxPWBD64CIBDhxiAMKMj_wYKVt65DYMnCL8SnxMPmz5yZKPY-JHCzsfkB_QUpgXefoz-D8jpnt27ewh4cO_esdevn75uf5WbJ6fvq8_bwqoSpmLrnZ17xBa12LT675TskSnOlS6sdWUGBohdakBOyUqLLVyNfR6UDW6anBddcc-nblAMSVCZ8BnOyfOZP3BSGFmlWZv_lNpZpXmrHIi6HeE3-SPlv5edLs-3-IU8eSRTAKPYbLoCSGbIfoLKG9LOJua
CitedBy_id crossref_primary_10_1007_s00603_024_04034_x
crossref_primary_10_1016_j_engfracmech_2023_109577
crossref_primary_10_1007_s40571_024_00862_4
crossref_primary_10_1016_j_mtcomm_2023_105547
crossref_primary_10_1016_j_tafmec_2024_104493
crossref_primary_10_1007_s10064_024_03975_5
crossref_primary_10_1016_j_apmt_2025_102601
crossref_primary_10_1007_s10064_024_03629_6
crossref_primary_10_1016_j_tafmec_2025_104975
crossref_primary_10_1038_s41598_025_01327_1
crossref_primary_10_1016_j_engfracmech_2024_110757
crossref_primary_10_1016_j_jobe_2024_109677
crossref_primary_10_1111_exsy_70080
crossref_primary_10_1016_j_engfracmech_2024_110759
crossref_primary_10_1016_j_eswa_2024_124897
crossref_primary_10_1016_j_tafmec_2023_103892
crossref_primary_10_1016_j_istruc_2025_109233
crossref_primary_10_1038_s41598_025_16516_1
crossref_primary_10_1007_s42107_025_01308_9
crossref_primary_10_1515_rams_2023_0162
crossref_primary_10_3390_app15126595
crossref_primary_10_3390_app15147954
crossref_primary_10_1016_j_engfracmech_2023_109677
crossref_primary_10_1016_j_engappai_2023_106387
crossref_primary_10_1016_j_engfracmech_2025_110949
crossref_primary_10_1016_j_ijpvp_2024_105420
crossref_primary_10_1016_j_compstruc_2023_107181
crossref_primary_10_1016_j_compositesa_2024_108287
crossref_primary_10_1016_j_soildyn_2023_107761
crossref_primary_10_1016_j_engappai_2025_111533
crossref_primary_10_1016_j_cscm_2023_e02622
crossref_primary_10_1016_j_jrmge_2025_02_003
crossref_primary_10_1098_rsta_2022_0397
crossref_primary_10_1016_j_engfracmech_2023_109321
crossref_primary_10_1038_s41598_024_62020_3
crossref_primary_10_1007_s40996_025_02006_x
crossref_primary_10_1016_j_istruc_2025_108441
crossref_primary_10_1002_eng2_12676
crossref_primary_10_1016_j_engfracmech_2023_109560
crossref_primary_10_1061_JMCEE7_MTENG_19538
crossref_primary_10_1016_j_engfracmech_2025_111449
crossref_primary_10_1016_j_mtcomm_2024_108804
crossref_primary_10_1016_j_mtcomm_2024_108600
crossref_primary_10_1007_s11831_024_10143_1
crossref_primary_10_1007_s11831_023_10043_w
crossref_primary_10_1007_s43452_023_00631_9
crossref_primary_10_1016_j_engfracmech_2024_109948
crossref_primary_10_1016_j_tafmec_2025_104966
crossref_primary_10_1016_j_tafmec_2023_103999
crossref_primary_10_1016_j_compstruc_2025_107657
Cites_doi 10.1023/A:1022627411411
10.1016/j.ijrmms.2009.12.015
10.1111/ffe.12672
10.1016/j.actamat.2020.03.016
10.1016/j.matdes.2017.05.027
10.1109/ICDAR.1995.598994
10.1073/pnas.2104765118
10.1016/j.ijrmms.2015.06.010
10.1016/j.ijrmms.2017.01.017
10.1016/j.compstruc.2022.106886
10.1177/0731684420915984
10.1016/j.engfracmech.2015.11.020
10.1016/j.engfailanal.2014.11.005
10.1073/pnas.1911815116
10.1016/j.tafmec.2019.102448
10.1016/j.measurement.2018.05.069
10.1109/34.709601
10.1016/j.tafmec.2020.102512
10.1016/j.commatsci.2015.02.045
10.1007/b94608_8
10.1016/j.ijrmms.2013.12.009
10.1016/j.petrol.2020.108202
10.1098/rsif.2017.0844
10.1063/5.0012055
10.1016/j.engfracmech.2022.108334
10.1016/j.engfracmech.2021.107890
10.1016/S0013-7944(03)00120-6
10.1016/j.tafmec.2021.102910
10.1016/j.engstruct.2022.114953
10.1016/j.eml.2017.10.001
10.1016/j.engfailanal.2017.07.011
10.1007/BF00015688
10.1061/(ASCE)IS.1943-555X.0000512
10.1023/A:1018054314350
10.1016/0148-9062(94)00015-U
10.1006/jcss.1997.1504
10.1016/j.engfracmech.2020.106907
10.1016/j.ijrmms.2011.06.015
10.1016/j.tafmec.2013.11.008
10.1016/j.tafmec.2021.103185
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engfracmech.2022.108914
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7315
ExternalDocumentID 10_1016_j_engfracmech_2022_108914
S0013794422006324
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-85f5bfec7f7e6b9b8412ef48e496a3202c601929ce8403e294f5cb9d45ef3df83
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000898742300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-7944
IngestDate Tue Nov 18 22:11:27 EST 2025
Sat Nov 29 07:28:34 EST 2025
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data-driven techniques
Fracture load
Supervised learning
Machine learning algorithm
Prediction model
Fracture toughness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-85f5bfec7f7e6b9b8412ef48e496a3202c601929ce8403e294f5cb9d45ef3df83
ParticipantIDs crossref_citationtrail_10_1016_j_engfracmech_2022_108914
crossref_primary_10_1016_j_engfracmech_2022_108914
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2022_108914
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Engineering fracture mechanics
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Daghigh, Lacy, Daghigh, Gu, Baghaei, Horstemeyer (b0100) 2020; 39
Cortes, Vapnik (b0155) 1995; 20
Ho TK. Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition, IEEE; 1995;(1): p. 278-282.
Refaeilzadeh, Tang, Liu (b0120) 2009
Piryonesi, El-Diraby (b0140) 2020; 26
Aliha, Ashtari, Ayatollahi (b0230) 2006; Vol. 5
Hua, Dong, Li, Wang (b0195) 2016; 153
Aliha, Ayatollahi (b0175) 2014; 69
Wiangkham, Ariyarit, Aengchuan (b0090) 2021; 112
Cui, Liu, An, Sun, Zhou, Cao (b0235) 2010; 47
Hua, Dong, Li, Xu, Wang (b0190) 2015; 78
Amrollahi, Baghbanan, Hashemolhosseini (b0225) 2011; 48
Broek (b0010) 1982
Breiman (b0135) 1996; 24
Hudson, Harrison (b0015) 2000
Ho (b0130) 1998; 20
Funatsu, Kuruppu, Matsui (b0185) 2014; 67
Liu, Athanasiou, Padture, Sheldon, Gao (b0035) 2021; 118
Hua, Dong, Peng, Li, Wang (b0200) 2017; 93
Mahmoodzadeh, Nejati, Mohammadi, Hashim Ibrahim, Khishe, Rashidi (b0115) 2022; 264
Hamdia, Lahmer, Nguyen-Thoi, Rabczuk (b0065) 2015; 102
Sharma, Anand Kumar, Kushvaha (b0085) 2020; 228
Nasiri, Khosravani, Weinberg (b0060) 2017; 81
Liu, Jia, Kong, Guan, Zhang (b0075) 2017; 129
Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, inference, and prediction; New York: springer; 2009;(2): p. 1-758.
Freund, Schapire (b0160) 1997; 55
Kazemi, Asgarkhani, Jankowski (b0170) 2023; 274
Ebrahimi, Hosseini, Taleb beydokhti (b0220) 2022; 117
Wei, Dai, Xu, Zhao (b0240) 2018; 41
Wang, Zhang, Liu (b0110) 2021; 253
Roy, Singh, Kodikara (b0080) 2018; 126
Kazemi, Jankowski (b0165) 2023; 274
Atkinson, Smelser, Sanchez (b0020) 1982; 18
Liang, Liu, Martin, Sun (b0045) 2018; 15
Fowell (b0180) 1995; 32
Nasrabadi NM. Book review: Pattern recognition and machine. Learning; 2007.
Mazhnik, Oganov (b0105) 2020; 128
Liu, Athanasiou, Padture, Sheldon, Gao (b0030) 2020; 190
Salavati, Alizadeh, Kazemi-Moridani, Berto (b0095) 2015; 48
Gu, Chen, Buehler (b0050) 2018; 18
Friedman (b0145) 2001
Dong, Wang, Xia (b0025) 2004; 71
Anderson (b0005) 2017
Dehestani, Hosseini, Beydokhti (b0205) 2020; 107
Jorbat, Hosseini, Mahdikhani (b0215) 2020; 109
Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (b0055) 2019; 116
Alipour, Esatyana, Sakhaee-Pour, Sadooni, Al-Kuwari (b0070) 2021; 200
Dehestani, Hosseini, Taleb Beydokhti (b0210) 2020; 106
Mahmoodzadeh (10.1016/j.engfracmech.2022.108914_b0115) 2022; 264
Kazemi (10.1016/j.engfracmech.2022.108914_b0170) 2023; 274
Dehestani (10.1016/j.engfracmech.2022.108914_b0205) 2020; 107
Alipour (10.1016/j.engfracmech.2022.108914_b0070) 2021; 200
Friedman (10.1016/j.engfracmech.2022.108914_b0145) 2001
Dong (10.1016/j.engfracmech.2022.108914_b0025) 2004; 71
Aliha (10.1016/j.engfracmech.2022.108914_b0230) 2006; Vol. 5
Liu (10.1016/j.engfracmech.2022.108914_b0075) 2017; 129
Hua (10.1016/j.engfracmech.2022.108914_b0195) 2016; 153
Daghigh (10.1016/j.engfracmech.2022.108914_b0100) 2020; 39
Wang (10.1016/j.engfracmech.2022.108914_b0110) 2021; 253
Wei (10.1016/j.engfracmech.2022.108914_b0240) 2018; 41
Liu (10.1016/j.engfracmech.2022.108914_b0035) 2021; 118
Refaeilzadeh (10.1016/j.engfracmech.2022.108914_b0120) 2009
Mazhnik (10.1016/j.engfracmech.2022.108914_b0105) 2020; 128
10.1016/j.engfracmech.2022.108914_b0150
Fowell (10.1016/j.engfracmech.2022.108914_b0180) 1995; 32
Anderson (10.1016/j.engfracmech.2022.108914_b0005) 2017
Funatsu (10.1016/j.engfracmech.2022.108914_b0185) 2014; 67
Salavati (10.1016/j.engfracmech.2022.108914_b0095) 2015; 48
Dehestani (10.1016/j.engfracmech.2022.108914_b0210) 2020; 106
Nasiri (10.1016/j.engfracmech.2022.108914_b0060) 2017; 81
10.1016/j.engfracmech.2022.108914_b0125
Liu (10.1016/j.engfracmech.2022.108914_b0030) 2020; 190
Atkinson (10.1016/j.engfracmech.2022.108914_b0020) 1982; 18
Hua (10.1016/j.engfracmech.2022.108914_b0190) 2015; 78
Broek (10.1016/j.engfracmech.2022.108914_b0010) 1982
Kazemi (10.1016/j.engfracmech.2022.108914_b0165) 2023; 274
Freund (10.1016/j.engfracmech.2022.108914_b0160) 1997; 55
Aliha (10.1016/j.engfracmech.2022.108914_b0175) 2014; 69
Roy (10.1016/j.engfracmech.2022.108914_b0080) 2018; 126
Wiangkham (10.1016/j.engfracmech.2022.108914_b0090) 2021; 112
Hudson (10.1016/j.engfracmech.2022.108914_b0015) 2000
Ho (10.1016/j.engfracmech.2022.108914_b0130) 1998; 20
Sharma (10.1016/j.engfracmech.2022.108914_b0085) 2020; 228
Jorbat (10.1016/j.engfracmech.2022.108914_b0215) 2020; 109
Hamdia (10.1016/j.engfracmech.2022.108914_b0065) 2015; 102
Gu (10.1016/j.engfracmech.2022.108914_b0050) 2018; 18
Hua (10.1016/j.engfracmech.2022.108914_b0200) 2017; 93
Amrollahi (10.1016/j.engfracmech.2022.108914_b0225) 2011; 48
Mozaffar (10.1016/j.engfracmech.2022.108914_b0055) 2019; 116
Cui (10.1016/j.engfracmech.2022.108914_b0235) 2010; 47
Liang (10.1016/j.engfracmech.2022.108914_b0045) 2018; 15
Piryonesi (10.1016/j.engfracmech.2022.108914_b0140) 2020; 26
Breiman (10.1016/j.engfracmech.2022.108914_b0135) 1996; 24
Cortes (10.1016/j.engfracmech.2022.108914_b0155) 1995; 20
Ebrahimi (10.1016/j.engfracmech.2022.108914_b0220) 2022; 117
10.1016/j.engfracmech.2022.108914_b0040
References_xml – start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0145
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 69
  start-page: 17
  year: 2014
  end-page: 25
  ident: b0175
  article-title: Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach
  publication-title: Theor Appl Fract Mech
– year: 1982
  ident: b0010
  publication-title: Elementary engineering fracture mechanics
– volume: 200
  start-page: 108202
  year: 2021
  ident: b0070
  article-title: Characterizing fracture toughness using machine learning
  publication-title: J Petrol Sci Engng
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: b0130
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: Vol. 5
  start-page: 181
  year: 2006
  end-page: 188
  ident: b0230
  article-title: Mode I and mode II fracture toughness testing for a coarse grain marble
  publication-title: Applied mechanics and materials
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: b0160
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
– volume: 128
  year: 2020
  ident: b0105
  article-title: Application of MLmethods for predicting new superhard materials
  publication-title: J Appl Phys
– volume: 18
  start-page: 19
  year: 2018
  end-page: 28
  ident: b0050
  article-title: De novo composite design based on MLalgorithm
  publication-title: Extreme Mech Lett
– start-page: 532
  year: 2009
  end-page: 538
  ident: b0120
  publication-title: Encyclopedia of Database Systems
– volume: 18
  start-page: 279
  year: 1982
  end-page: 291
  ident: b0020
  article-title: Combined mode fracture via the cracked Brazilian disk test
  publication-title: Int J Fract
– volume: 228
  start-page: 106907
  year: 2020
  ident: b0085
  article-title: Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network
  publication-title: Engng Fract Mech
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0135
  article-title: Bagging predictors
  publication-title: Mach Learn
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0155
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 71
  start-page: 1135
  year: 2004
  end-page: 1148
  ident: b0025
  article-title: Stress intensity factors for central cracked circular disk subjected to compression
  publication-title: Engng Fract Mech
– volume: 118
  year: 2021
  ident: b0035
  article-title: Knowledge extraction and transfer in data-driven fracture mechanics
  publication-title: Proc Natl Acad Sci
– volume: 112
  start-page: 102910
  year: 2021
  ident: b0090
  article-title: Prediction of the mixed mode I/II fracture toughness of PMMA by an artificial intelligence approach
  publication-title: Theor Appl Fract Mech
– volume: 107
  year: 2020
  ident: b0205
  article-title: Effect of wetting–drying cycles on mode I and mode II fracture toughness of sandstone in natural (pH= 7) and acidic (pH= 3) environments
  publication-title: Theor Appl Fract Mech
– volume: 264
  start-page: 108334
  year: 2022
  ident: b0115
  article-title: Prediction of Mode-I rock fracture toughness using support vector regression with metaheuristic optimization algorithms
  publication-title: Engng Fract Mech
– reference: Ho TK. Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition, IEEE; 1995;(1): p. 278-282.
– volume: 153
  start-page: 143
  year: 2016
  end-page: 150
  ident: b0195
  article-title: Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone
  publication-title: Engng Fract Mech
– volume: 41
  start-page: 197
  year: 2018
  end-page: 211
  ident: b0240
  article-title: Experimental and numerical investigation of cracked chevron notched Brazilian disc specimen for fracture toughness testing of rock
  publication-title: Fatigue Fract Engng Mater Struct
– volume: 102
  start-page: 304
  year: 2015
  end-page: 313
  ident: b0065
  article-title: Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS
  publication-title: Comput Mater Sci
– volume: 274
  start-page: 106886
  year: 2023
  ident: b0165
  article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput Struct
– reference: Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, inference, and prediction; New York: springer; 2009;(2): p. 1-758.
– volume: 32
  start-page: 57
  year: 1995
  end-page: 64
  ident: b0180
  article-title: Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
– volume: 78
  start-page: 331
  year: 2015
  end-page: 335
  ident: b0190
  article-title: The influence of cyclic wetting and drying on the fracture toughness of sandstone
  publication-title: Int J Rock Mech Min Sci
– volume: 47
  start-page: 871
  year: 2010
  end-page: 876
  ident: b0235
  article-title: A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness
  publication-title: Int J Rock Mech Min Sci
– reference: Nasrabadi NM. Book review: Pattern recognition and machine. Learning; 2007.
– volume: 39
  start-page: 587
  year: 2020
  end-page: 598
  ident: b0100
  article-title: MLpredictions on fracture toughness of multiscale bio-nano-composites
  publication-title: J Reinf Plast Compos
– volume: 190
  start-page: 105
  year: 2020
  end-page: 112
  ident: b0030
  article-title: A MLapproach to fracture mechanics problems
  publication-title: Acta Mater
– volume: 116
  start-page: 26414
  year: 2019
  end-page: 26420
  ident: b0055
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc Natl Acad Sci
– volume: 67
  start-page: 1
  year: 2014
  end-page: 8
  ident: b0185
  article-title: Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone
  publication-title: Int J Rock Mech Min Sci
– volume: 81
  start-page: 270
  year: 2017
  end-page: 293
  ident: b0060
  article-title: Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review
  publication-title: Engng Fail Anal
– volume: 129
  start-page: 210
  year: 2017
  end-page: 218
  ident: b0075
  article-title: Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys
  publication-title: Mater Des
– volume: 253
  year: 2021
  ident: b0110
  article-title: MLapproaches to rock fracture mechanics problems: Mode-I fracture toughness determination
  publication-title: Engng Fract Mech
– volume: 106
  start-page: 102448
  year: 2020
  ident: b0210
  article-title: Effect of wetting–drying cycles on mode I and mode II fracture toughness of cement mortar and concrete
  publication-title: Theor Appl Fract Mech
– year: 2017
  ident: b0005
  article-title: Fracture mechanics: fundamentals and applications
– year: 2000
  ident: b0015
  article-title: Engineering rock mechanics: an introduction to the principles
– volume: 26
  start-page: 04019036
  year: 2020
  ident: b0140
  article-title: Data analytics in asset management: Cost-effective prediction of the pavement condition index
  publication-title: J Infrastruct Syst
– volume: 117
  year: 2022
  ident: b0220
  article-title: Experimental study of effect of number of heating–cooling cycles on mode I and mode II fracture toughness of travertine
  publication-title: Theor Appl Fract Mech
– volume: 274
  start-page: 114953
  year: 2023
  ident: b0170
  article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
  publication-title: Engng Struct
– volume: 15
  start-page: 20170844
  year: 2018
  ident: b0045
  article-title: A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis
  publication-title: J R Soc Interface
– volume: 93
  start-page: 242
  year: 2017
  end-page: 249
  ident: b0200
  article-title: Experimental investigation on the effect of wetting-drying cycles on mixed mode fracture toughness of sandstone
  publication-title: Int J Rock Mech Min Sci
– volume: 48
  start-page: 121
  year: 2015
  end-page: 136
  ident: b0095
  article-title: A new expression to evaluate the critical fracture load for bainitic functionally graded steels under mixed mode (I+ II) loading
  publication-title: Engng Fail Anal
– volume: 109
  year: 2020
  ident: b0215
  article-title: Effect of polypropylene fibers on the mode I, mode II, and mixed-mode fracture toughness and crack propagation in fiber-reinforced concrete
  publication-title: Theor Appl Fract Mech
– volume: 48
  start-page: 1123
  year: 2011
  end-page: 1134
  ident: b0225
  article-title: Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I-II loading conditions using CCNBD and HCCD specimens
  publication-title: Int J Rock Mech Min Sci
– volume: 126
  start-page: 231
  year: 2018
  end-page: 241
  ident: b0080
  article-title: Predicting mode-I fracture toughness of rocks using soft computing and multiple regression
  publication-title: Measurement
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.engfracmech.2022.108914_b0155
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1023/A:1022627411411
– volume: 47
  start-page: 871
  issue: 5
  year: 2010
  ident: 10.1016/j.engfracmech.2022.108914_b0235
  article-title: A comparison of two ISRM suggested chevron notched specimens for testing mode-I rock fracture toughness
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.12.015
– volume: 41
  start-page: 197
  issue: 1
  year: 2018
  ident: 10.1016/j.engfracmech.2022.108914_b0240
  article-title: Experimental and numerical investigation of cracked chevron notched Brazilian disc specimen for fracture toughness testing of rock
  publication-title: Fatigue Fract Engng Mater Struct
  doi: 10.1111/ffe.12672
– volume: 190
  start-page: 105
  year: 2020
  ident: 10.1016/j.engfracmech.2022.108914_b0030
  article-title: A MLapproach to fracture mechanics problems
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2020.03.016
– volume: 129
  start-page: 210
  year: 2017
  ident: 10.1016/j.engfracmech.2022.108914_b0075
  article-title: Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.05.027
– ident: 10.1016/j.engfracmech.2022.108914_b0125
  doi: 10.1109/ICDAR.1995.598994
– volume: 118
  issue: 23
  year: 2021
  ident: 10.1016/j.engfracmech.2022.108914_b0035
  article-title: Knowledge extraction and transfer in data-driven fracture mechanics
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2104765118
– volume: 78
  start-page: 331
  year: 2015
  ident: 10.1016/j.engfracmech.2022.108914_b0190
  article-title: The influence of cyclic wetting and drying on the fracture toughness of sandstone
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2015.06.010
– start-page: 532
  year: 2009
  ident: 10.1016/j.engfracmech.2022.108914_b0120
– volume: 93
  start-page: 242
  year: 2017
  ident: 10.1016/j.engfracmech.2022.108914_b0200
  article-title: Experimental investigation on the effect of wetting-drying cycles on mixed mode fracture toughness of sandstone
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2017.01.017
– volume: 274
  start-page: 106886
  year: 2023
  ident: 10.1016/j.engfracmech.2022.108914_b0165
  article-title: Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2022.106886
– volume: 39
  start-page: 587
  issue: 15–16
  year: 2020
  ident: 10.1016/j.engfracmech.2022.108914_b0100
  article-title: MLpredictions on fracture toughness of multiscale bio-nano-composites
  publication-title: J Reinf Plast Compos
  doi: 10.1177/0731684420915984
– volume: Vol. 5
  start-page: 181
  year: 2006
  ident: 10.1016/j.engfracmech.2022.108914_b0230
  article-title: Mode I and mode II fracture toughness testing for a coarse grain marble
– ident: 10.1016/j.engfracmech.2022.108914_b0040
– volume: 153
  start-page: 143
  year: 2016
  ident: 10.1016/j.engfracmech.2022.108914_b0195
  article-title: Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2015.11.020
– year: 2017
  ident: 10.1016/j.engfracmech.2022.108914_b0005
– volume: 48
  start-page: 121
  year: 2015
  ident: 10.1016/j.engfracmech.2022.108914_b0095
  article-title: A new expression to evaluate the critical fracture load for bainitic functionally graded steels under mixed mode (I+ II) loading
  publication-title: Engng Fail Anal
  doi: 10.1016/j.engfailanal.2014.11.005
– volume: 116
  start-page: 26414
  issue: 52
  year: 2019
  ident: 10.1016/j.engfracmech.2022.108914_b0055
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1911815116
– volume: 106
  start-page: 102448
  year: 2020
  ident: 10.1016/j.engfracmech.2022.108914_b0210
  article-title: Effect of wetting–drying cycles on mode I and mode II fracture toughness of cement mortar and concrete
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2019.102448
– volume: 126
  start-page: 231
  year: 2018
  ident: 10.1016/j.engfracmech.2022.108914_b0080
  article-title: Predicting mode-I fracture toughness of rocks using soft computing and multiple regression
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.069
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.engfracmech.2022.108914_b0130
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.709601
– volume: 107
  year: 2020
  ident: 10.1016/j.engfracmech.2022.108914_b0205
  article-title: Effect of wetting–drying cycles on mode I and mode II fracture toughness of sandstone in natural (pH= 7) and acidic (pH= 3) environments
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2020.102512
– volume: 102
  start-page: 304
  year: 2015
  ident: 10.1016/j.engfracmech.2022.108914_b0065
  article-title: Predicting the fracture toughness of PNCs: A stochastic approach based on ANN and ANFIS
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2015.02.045
– ident: 10.1016/j.engfracmech.2022.108914_b0150
  doi: 10.1007/b94608_8
– volume: 67
  start-page: 1
  year: 2014
  ident: 10.1016/j.engfracmech.2022.108914_b0185
  article-title: Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2013.12.009
– year: 1982
  ident: 10.1016/j.engfracmech.2022.108914_b0010
– volume: 200
  start-page: 108202
  year: 2021
  ident: 10.1016/j.engfracmech.2022.108914_b0070
  article-title: Characterizing fracture toughness using machine learning
  publication-title: J Petrol Sci Engng
  doi: 10.1016/j.petrol.2020.108202
– year: 2000
  ident: 10.1016/j.engfracmech.2022.108914_b0015
– volume: 15
  start-page: 20170844
  issue: 138
  year: 2018
  ident: 10.1016/j.engfracmech.2022.108914_b0045
  article-title: A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0844
– volume: 128
  issue: 7
  year: 2020
  ident: 10.1016/j.engfracmech.2022.108914_b0105
  article-title: Application of MLmethods for predicting new superhard materials
  publication-title: J Appl Phys
  doi: 10.1063/5.0012055
– start-page: 1189
  year: 2001
  ident: 10.1016/j.engfracmech.2022.108914_b0145
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 264
  start-page: 108334
  year: 2022
  ident: 10.1016/j.engfracmech.2022.108914_b0115
  article-title: Prediction of Mode-I rock fracture toughness using support vector regression with metaheuristic optimization algorithms
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2022.108334
– volume: 253
  year: 2021
  ident: 10.1016/j.engfracmech.2022.108914_b0110
  article-title: MLapproaches to rock fracture mechanics problems: Mode-I fracture toughness determination
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2021.107890
– volume: 71
  start-page: 1135
  issue: 7–8
  year: 2004
  ident: 10.1016/j.engfracmech.2022.108914_b0025
  article-title: Stress intensity factors for central cracked circular disk subjected to compression
  publication-title: Engng Fract Mech
  doi: 10.1016/S0013-7944(03)00120-6
– volume: 112
  start-page: 102910
  year: 2021
  ident: 10.1016/j.engfracmech.2022.108914_b0090
  article-title: Prediction of the mixed mode I/II fracture toughness of PMMA by an artificial intelligence approach
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2021.102910
– volume: 274
  start-page: 114953
  year: 2023
  ident: 10.1016/j.engfracmech.2022.108914_b0170
  article-title: Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
  publication-title: Engng Struct
  doi: 10.1016/j.engstruct.2022.114953
– volume: 109
  year: 2020
  ident: 10.1016/j.engfracmech.2022.108914_b0215
  article-title: Effect of polypropylene fibers on the mode I, mode II, and mixed-mode fracture toughness and crack propagation in fiber-reinforced concrete
  publication-title: Theor Appl Fract Mech
– volume: 18
  start-page: 19
  year: 2018
  ident: 10.1016/j.engfracmech.2022.108914_b0050
  article-title: De novo composite design based on MLalgorithm
  publication-title: Extreme Mech Lett
  doi: 10.1016/j.eml.2017.10.001
– volume: 81
  start-page: 270
  year: 2017
  ident: 10.1016/j.engfracmech.2022.108914_b0060
  article-title: Fracture mechanics and mechanical fault detection by artificial intelligence methods: A review
  publication-title: Engng Fail Anal
  doi: 10.1016/j.engfailanal.2017.07.011
– volume: 18
  start-page: 279
  issue: 4
  year: 1982
  ident: 10.1016/j.engfracmech.2022.108914_b0020
  article-title: Combined mode fracture via the cracked Brazilian disk test
  publication-title: Int J Fract
  doi: 10.1007/BF00015688
– volume: 26
  start-page: 04019036
  issue: 1
  year: 2020
  ident: 10.1016/j.engfracmech.2022.108914_b0140
  article-title: Data analytics in asset management: Cost-effective prediction of the pavement condition index
  publication-title: J Infrastruct Syst
  doi: 10.1061/(ASCE)IS.1943-555X.0000512
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.engfracmech.2022.108914_b0135
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1023/A:1018054314350
– volume: 32
  start-page: 57
  issue: 1
  year: 1995
  ident: 10.1016/j.engfracmech.2022.108914_b0180
  article-title: Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens
  publication-title: Int J Rock Mech Min Sci Geomech Abstr
  doi: 10.1016/0148-9062(94)00015-U
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.engfracmech.2022.108914_b0160
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– volume: 228
  start-page: 106907
  year: 2020
  ident: 10.1016/j.engfracmech.2022.108914_b0085
  article-title: Effect of aspect ratio on dynamic fracture toughness of particulate polymer composite using artificial neural network
  publication-title: Engng Fract Mech
  doi: 10.1016/j.engfracmech.2020.106907
– volume: 48
  start-page: 1123
  issue: 7
  year: 2011
  ident: 10.1016/j.engfracmech.2022.108914_b0225
  article-title: Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I-II loading conditions using CCNBD and HCCD specimens
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.06.015
– volume: 69
  start-page: 17
  year: 2014
  ident: 10.1016/j.engfracmech.2022.108914_b0175
  article-title: Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading–A statistical approach
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2013.11.008
– volume: 117
  year: 2022
  ident: 10.1016/j.engfracmech.2022.108914_b0220
  article-title: Experimental study of effect of number of heating–cooling cycles on mode I and mode II fracture toughness of travertine
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2021.103185
SSID ssj0007680
Score 2.56179
Snippet •Twenty Machine Learning (ML) algorithms implemented in Python software to predict fracture load and fracture toughness in three modes.•For fracture load, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108914
SubjectTerms Data-driven techniques
Fracture load
Fracture toughness
Machine learning algorithm
Prediction model
Supervised learning
Title Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques
URI https://dx.doi.org/10.1016/j.engfracmech.2022.108914
Volume 276
WOSCitedRecordID wos000898742300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7315
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007680
  issn: 0013-7944
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdZO8b6MPZV1u4DDfaWysS2bEuwl7C1bGMLZXQjb8Yfp5K2cUvihtI_Z3_pTrIlu91Gu8FeTDiQbPl-ufudfLoj5E0cKxGrkjOJ_obxKASWoyNiUZ5kyP6zojQV-L5_TiYTMZ3K_cHghz0LszpJqkpcXMiz_6pqlKGy9dHZv1C3mxQF-BuVjldUO15vpfj9hf72Yomg0qeg9EeCWrfjMXZtVg0VBsnAFmDKpuoMAIyKkT42rfLmmpG7tE50cMfL4bnZUlhhYK1TZucmAxNsy4nDoasEu7yy09_VOuyeYw76rHEvx_496JZdTWup4dhzHiC7hLmR7TnZOC-N5KuTTGb1saG_X7z-_kUQ9HJBWpvshwytAu_b5CDpW1V_JGRz1PQXg9_sPRx5UB3qheg1ePouXjfmapHta87PpSTabLejtDdVqqdKm6nukPUgiSRazvXxx93pJ-fvMWAb2T4Zeh33yOsui_APz_V7FtRjNgcPyYM2JKHjBkqPyACqx2Sjp7wn5LIDFT1V1CqTOlDRWUWvg4paUO3QBlI7FAFFDaCoARRtAUVbQFELKNoB6in5trd78O4Da7t2sCIM_JqJSEW5giJRCcS5zAX3A1BcAJdxFuI7KGIdVsgCBB-FEEiuoiKXJY9AhaUS4SZZq04reEaoEHEGJbJQ9MG8zKTIkG5xXxdMUsBVvkWEfYtp0Za0151VTtIbtblFAjf0rKnrcptBb62q0pagNsQzRTjePHz7X-75nNzv_jUvyFq9OIeX5G6xqmfLxasWiz8Bqsu8xw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+fracture+toughness+in+fibre-reinforced+concrete%2C+mortar%2C+and+rocks+using+various+machine+learning+techniques&rft.jtitle=Engineering+fracture+mechanics&rft.au=Dehestani%2C+A.&rft.au=Kazemi%2C+F.&rft.au=Abdi%2C+R.&rft.au=Nitka%2C+M.&rft.date=2022-12-01&rft.issn=0013-7944&rft.volume=276&rft.spage=108914&rft_id=info:doi/10.1016%2Fj.engfracmech.2022.108914&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engfracmech_2022_108914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon