A steerable pyramid autoencoder based framework for anomaly frame detection of water pipeline CCTV inspection

Closed-circuit television (CCTV) is being widely adopted in water pipeline inspection. The inspector needs to spend a long time to watch the recorded video during the office-based survey and can get fatigue easily. An automated process can release the inspector’s work load and ensure the consistent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 174; S. 109020
Hauptverfasser: Jiao, Yutong, Rayhana, Rakiba, Bin, Junchi, Liu, Zheng, Wu, Angie, Kong, Xiangjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2021
Schlagworte:
ISSN:0263-2241, 1873-412X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Closed-circuit television (CCTV) is being widely adopted in water pipeline inspection. The inspector needs to spend a long time to watch the recorded video during the office-based survey and can get fatigue easily. An automated process can release the inspector’s work load and ensure the consistent quality of the survey. However, a fully automated survey of varied structural discontinuities still remains as a challenge. This study aims to first identify the anomaly frames of the CCTV video, which contain the major anomalies captured from the internal surface of the pipe. Thus, the inspector can focus more on these anomaly frames. In this paper, an anomaly frame detection framework based on steerable pyramid autoencoder (SPAE) is proposed. The SPAE can generate discriminative representations to be used in the prediction. Both the parameter optimization and comparative studies for the proposed SPAE were carried out in this research. The experimental results demonstrate that this novel SPAE algorithm can achieve 0.984 accuracy and 0.984 F1-score, which outperforms other state-of-the-art methods selected for comparison. Thus, the proposed framework can significantly improve the accuracy and efficiency for anomaly frame detection, which will highly facilitate the pipeline condition assessment through the CCTV inspection. [Display omitted] •The paper proposes a steerable pyramid autoencoder based framework.•Anomaly frame detection is conducted on closed-circuit television videos.•The framework significantly facilitates the water pipeline condition assessment.•Steerable pyramid is integrated into the autoencoder based network.•The method develops great capability of representation learning and extraction.
AbstractList Closed-circuit television (CCTV) is being widely adopted in water pipeline inspection. The inspector needs to spend a long time to watch the recorded video during the office-based survey and can get fatigue easily. An automated process can release the inspector’s work load and ensure the consistent quality of the survey. However, a fully automated survey of varied structural discontinuities still remains as a challenge. This study aims to first identify the anomaly frames of the CCTV video, which contain the major anomalies captured from the internal surface of the pipe. Thus, the inspector can focus more on these anomaly frames. In this paper, an anomaly frame detection framework based on steerable pyramid autoencoder (SPAE) is proposed. The SPAE can generate discriminative representations to be used in the prediction. Both the parameter optimization and comparative studies for the proposed SPAE were carried out in this research. The experimental results demonstrate that this novel SPAE algorithm can achieve 0.984 accuracy and 0.984 F1-score, which outperforms other state-of-the-art methods selected for comparison. Thus, the proposed framework can significantly improve the accuracy and efficiency for anomaly frame detection, which will highly facilitate the pipeline condition assessment through the CCTV inspection. [Display omitted] •The paper proposes a steerable pyramid autoencoder based framework.•Anomaly frame detection is conducted on closed-circuit television videos.•The framework significantly facilitates the water pipeline condition assessment.•Steerable pyramid is integrated into the autoencoder based network.•The method develops great capability of representation learning and extraction.
ArticleNumber 109020
Author Jiao, Yutong
Wu, Angie
Kong, Xiangjie
Rayhana, Rakiba
Liu, Zheng
Bin, Junchi
Author_xml – sequence: 1
  givenname: Yutong
  orcidid: 0000-0003-1181-0589
  surname: Jiao
  fullname: Jiao, Yutong
  organization: School of Engineering, University of British Columbia, Kelowna BC, Canada
– sequence: 2
  givenname: Rakiba
  surname: Rayhana
  fullname: Rayhana, Rakiba
  organization: School of Engineering, University of British Columbia, Kelowna BC, Canada
– sequence: 3
  givenname: Junchi
  surname: Bin
  fullname: Bin, Junchi
  organization: School of Engineering, University of British Columbia, Kelowna BC, Canada
– sequence: 4
  givenname: Zheng
  orcidid: 0000-0002-7241-3483
  surname: Liu
  fullname: Liu, Zheng
  email: zheng.liu@ubc.ca
  organization: School of Engineering, University of British Columbia, Kelowna BC, Canada
– sequence: 5
  givenname: Angie
  surname: Wu
  fullname: Wu, Angie
  organization: Pure Technologies, Mississauga ON, Canada
– sequence: 6
  givenname: Xiangjie
  surname: Kong
  fullname: Kong, Xiangjie
  organization: Pure Technologies, Mississauga ON, Canada
BookMark eNqNkE1qwzAQRkVJoUnaO6gHcCrJjmytSjD9g0A3aelOyNIYlNqSkZSG3L4O7qJ01dXAzHyPmbdAM-cdIHRLyYoSyu_2qx5UPATowaUVI4yOfUEYuUBzWpV5VlD2MUNzwnieMVbQK7SIcU8I4bngc9RvcEwAQTUd4OEUVG8NVofkwWlvIOBGRTC4HQdw9OETtz5g5XyvutPUxQYS6GS9w77FR5XG0GAH6KwDXNe7d2xdHKaNa3TZqi7CzU9dorfHh139nG1fn17qzTbTOaMp441p16YAClUrRFNwlpec5roSZaUJEAAoW85Ew5Up6Lop14qUwAsuKsLXDcuX6H7i6uBjDNBKbZM6X5CCsp2kRJ7tyb38ZU-e7cnJ3kgQfwhDsL0Kp39l6ykL44tfFoKM2o4-wdgwepDG239QvgHjKZZP
CitedBy_id crossref_primary_10_1016_j_measurement_2024_115954
crossref_primary_10_3390_systems11020056
crossref_primary_10_3390_app11125482
crossref_primary_10_1016_j_watres_2022_118973
crossref_primary_10_1051_e3sconf_202341702017
crossref_primary_10_3390_s23249761
crossref_primary_10_1080_0951192X_2024_2397821
crossref_primary_10_1088_1361_6501_ad0e3f
crossref_primary_10_1109_TIM_2021_3098381
crossref_primary_10_1016_j_measurement_2021_109529
Cites_doi 10.1109/JSEN.2014.2336240
10.1080/1573062X.2011.617829
10.1016/j.measurement.2012.05.032
10.2166/hydro.2010.144
10.1016/j.autcon.2013.10.012
10.1109/ICIP.1995.537667
10.1109/JSEN.2011.2176484
10.1016/j.neunet.2014.09.003
10.1109/ACCESS.2018.2881003
10.1016/j.compag.2014.12.007
10.3390/s17091967
10.1061/(ASCE)IS.1943-555X.0000161
10.1007/978-3-030-11726-9_28
10.1109/JSEN.2011.2181161
10.1016/j.patcog.2016.03.028
10.1016/j.measurement.2018.10.089
10.1016/S0167-8655(01)00047-2
10.1109/MNET.2011.5687953
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2021.109020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2021_109020
S0263224121000543
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-6bdf5d4e1e8f99b46237613c8978c0e0eee7f629b6ad415b75a07e64698065b23
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634792700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Sat Nov 29 06:48:06 EST 2025
Tue Nov 18 22:41:39 EST 2025
Fri Feb 23 02:41:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Steerable pyramid
Deep learning
Autoencoder
Anomaly frame detection
CCTV inspection
Classification
Water pipeline
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-6bdf5d4e1e8f99b46237613c8978c0e0eee7f629b6ad415b75a07e64698065b23
ORCID 0000-0003-1181-0589
0000-0002-7241-3483
ParticipantIDs crossref_citationtrail_10_1016_j_measurement_2021_109020
crossref_primary_10_1016_j_measurement_2021_109020
elsevier_sciencedirect_doi_10_1016_j_measurement_2021_109020
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ikeda, Ishibashi, Nakano, Watanabe, Kawahara (b22) 2018
E. Simoncelli, W. Freeman, Steerable pyramid: a flexible architecture for multi-scale derivative computation, in: Anon (Ed.), IEEE International Conference on Image Processing, Vol. 3, 1995, pp. 444–447.
Erfani, Rajasegarar, Karunasekera, Leckie (b25) 2016; 58
Mounce, Mounce, Boxall (b9) 2011; 13
Rayhana, Jiao, Zaji, Liu (b13) 2020
Lopez-Martin, Carro, Sanchez-Esguevillas, Lloret (b19) 2017; 17
He, Zhang, Ren, Sun (b32) 2016
Chong, Tay (b21) 2017
Liu, Kleiner, Rajani, Wang, Condit (b4) 2012
A. Myronenko, 3D MRI brain tumor segmentation using autoencoder regularization, in: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Cham, 2019, pp. 311–320.
Liu, Ho, Tsukada, Hanasaki, Dai, Li (b29) 2002; 3
Yoon, Ye, Heidemann, Littlefield, Shahabi (b8) 2011; 25
González, Balajewicz (b26) 2018
Liu, Kleiner (b11) 2014; 14
Park, Kim, Lee (b17) 2018; 6
Liu, Kleiner (b1) 2013; 46
Cataldo, Cannazza, De Benedetto, Giaquinto (b10) 2012; 12
(b3) 2020
Liu, Kleiner (b2) 2012; 12
Schmidhuber (b16) 2015; 61
Ma, Li, Wen, Fu, Zhang (b14) 2015; 111
Lu, Xu (b20) 2018
Islam, Sadiq, Rodriguez, Francisque, Najjaran, Hoorfar (b5) 2011; 8
Halfawy, Hengmeechai (b34) 2014; 38
Duran, Althoefer, Seneviratne (b12) 2002
Liu, Tsukada, Hanasaki, Ho, Dai (b28) 2001; 22
(b30) 2008
Ong, Png, Lin, Pua, Rahman (b6) 2017
Ke, Lin, Huang (b18) 2017
Wang, Lu, Yan (b7) 2019; 134
Rayhana, Jiao, Liu, Wu, Kong (b15) 2020
Beggel, Pfeiffer, Bischl (b23) 2019
Zhao, Jia, Lin (b24) 2019
Halfawy, Hengmeechai (b33) 2014; 20
Rayhana (10.1016/j.measurement.2021.109020_b15) 2020
Liu (10.1016/j.measurement.2021.109020_b28) 2001; 22
Islam (10.1016/j.measurement.2021.109020_b5) 2011; 8
Zhao (10.1016/j.measurement.2021.109020_b24) 2019
He (10.1016/j.measurement.2021.109020_b32) 2016
Duran (10.1016/j.measurement.2021.109020_b12) 2002
Rayhana (10.1016/j.measurement.2021.109020_b13) 2020
Ke (10.1016/j.measurement.2021.109020_b18) 2017
Liu (10.1016/j.measurement.2021.109020_b4) 2012
(10.1016/j.measurement.2021.109020_b3) 2020
(10.1016/j.measurement.2021.109020_b30) 2008
Beggel (10.1016/j.measurement.2021.109020_b23) 2019
Halfawy (10.1016/j.measurement.2021.109020_b33) 2014; 20
González (10.1016/j.measurement.2021.109020_b26) 2018
Yoon (10.1016/j.measurement.2021.109020_b8) 2011; 25
Mounce (10.1016/j.measurement.2021.109020_b9) 2011; 13
10.1016/j.measurement.2021.109020_b31
Park (10.1016/j.measurement.2021.109020_b17) 2018; 6
Ong (10.1016/j.measurement.2021.109020_b6) 2017
Ma (10.1016/j.measurement.2021.109020_b14) 2015; 111
Lu (10.1016/j.measurement.2021.109020_b20) 2018
Lopez-Martin (10.1016/j.measurement.2021.109020_b19) 2017; 17
Liu (10.1016/j.measurement.2021.109020_b1) 2013; 46
Schmidhuber (10.1016/j.measurement.2021.109020_b16) 2015; 61
Wang (10.1016/j.measurement.2021.109020_b7) 2019; 134
Liu (10.1016/j.measurement.2021.109020_b29) 2002; 3
Liu (10.1016/j.measurement.2021.109020_b2) 2012; 12
10.1016/j.measurement.2021.109020_b27
Halfawy (10.1016/j.measurement.2021.109020_b34) 2014; 38
Ikeda (10.1016/j.measurement.2021.109020_b22) 2018
Liu (10.1016/j.measurement.2021.109020_b11) 2014; 14
Erfani (10.1016/j.measurement.2021.109020_b25) 2016; 58
Chong (10.1016/j.measurement.2021.109020_b21) 2017
Cataldo (10.1016/j.measurement.2021.109020_b10) 2012; 12
References_xml – start-page: 2551
  year: 2002
  end-page: 2556
  ident: b12
  article-title: Automated sewer pipe inspection through image processing
  publication-title: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Vol. 3
– volume: 20
  year: 2014
  ident: b33
  article-title: Efficient algorithm for crack detection in sewer images from closed-circuit television inspections
  publication-title: J. Infrastruct. Syst.
– volume: 8
  start-page: 351
  year: 2011
  end-page: 365
  ident: b5
  article-title: Leakage detection and location in water distribution systems using a fuzzy-based methodology
  publication-title: Urban Water J.
– volume: 14
  start-page: 4122
  year: 2014
  end-page: 4133
  ident: b11
  article-title: Computational intelligence for urban infrastructure condition assessment: Water transmission and distribution systems
  publication-title: IEEE Sens. J.
– reference: A. Myronenko, 3D MRI brain tumor segmentation using autoencoder regularization, in: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Cham, 2019, pp. 311–320.
– start-page: 189
  year: 2017
  end-page: 196
  ident: b21
  article-title: Abnormal event detection in videos using spatiotemporal autoencoder
– year: 2019
  ident: b23
  article-title: Robust anomaly detection in images using adversarial autoencoders
– volume: 6
  start-page: 70884
  year: 2018
  end-page: 70901
  ident: b17
  article-title: Anomaly detection for HTTP using convolutional autoencoders
  publication-title: IEEE Access
– volume: 38
  start-page: 1
  year: 2014
  end-page: 13
  ident: b34
  article-title: Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine
  publication-title: Autom. Constr.
– start-page: 1
  year: 2019
  end-page: 21
  ident: b24
  article-title: Deep Laplacian auto-encoder and its application into imbalanced fault diagnosis of rotating machinery
  publication-title: Measurement
– start-page: 20
  year: 2020
  end-page: 27
  ident: b15
  article-title: Water pipe valve detection by using deep neural networks
  publication-title: Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, Vol. 11382
– volume: 111
  start-page: 92
  year: 2015
  end-page: 102
  ident: b14
  article-title: A key frame extraction method for processing greenhouse vegetables production monitoring video
  publication-title: Comput. Electron. Agric.
– volume: 12
  start-page: 1987
  year: 2012
  end-page: 1992
  ident: b2
  article-title: State-of-the-art review of technologies for pipe structural health monitoring
  publication-title: IEEE Sens. J.
– volume: 46
  start-page: 1
  year: 2013
  end-page: 15
  ident: b1
  article-title: State of the art review of inspection technologies for condition assessment of water pipes
  publication-title: Measurement
– volume: 3
  start-page: 203
  year: 2002
  end-page: 214
  ident: b29
  article-title: Using multiple orientational filters of steerable pyramid for image registration
  publication-title: Int. J. Multi-Sensor Multi-Source Inf. Fusion
– volume: 13
  start-page: 672
  year: 2011
  end-page: 686
  ident: b9
  article-title: Novelty detection for time series data analysis in water distribution systems using support vector machines
  publication-title: J. Hydroinform.
– volume: 12
  start-page: 1660
  year: 2012
  end-page: 1667
  ident: b10
  article-title: A new method for detecting leaks in underground water pipelines
  publication-title: IEEE Sens. J.
– start-page: 167
  year: 2017
  end-page: 171
  ident: b6
  article-title: Acoustic vibration sensor based on macro-bend coated fiber for pipeline leakage detection
  publication-title: 2017 17th International Conference on Control, Automation and Systems
– year: 2020
  ident: b3
  article-title: Confidently manage your pipes without the need to shutdown or dewater
– year: 2018
  ident: b20
  article-title: Anomaly detection for skin disease images using variational autoencoder
– start-page: 770
  year: 2016
  end-page: 778
  ident: b32
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2020
  end-page: 18
  ident: b13
  article-title: Automated vision systems for condition assessment of sewer and water pipelines
  publication-title: IEEE Trans. Autom. Sci. Eng.
– reference: E. Simoncelli, W. Freeman, Steerable pyramid: a flexible architecture for multi-scale derivative computation, in: Anon (Ed.), IEEE International Conference on Image Processing, Vol. 3, 1995, pp. 444–447.
– volume: 134
  start-page: 326
  year: 2019
  end-page: 335
  ident: b7
  article-title: Multi-sensors based condition monitoring of rotary machines: An approach of multidimensional time-series analysis
  publication-title: Measurement
– year: 2018
  ident: b26
  article-title: Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems
– volume: 17
  start-page: 1967
  year: 2017
  ident: b19
  article-title: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in IoT
  publication-title: Sensors
– start-page: 1163
  year: 2017
  end-page: 1168
  ident: b18
  article-title: Anomaly detection of logo images in the mobile phone using convolutional autoencoder
  publication-title: 2017 4th International Conference on Systems and Informatics
– year: 2018
  ident: b22
  article-title: Anomaly detection and interpretation using multimodal autoencoder and sparse optimization
– volume: 25
  start-page: 50
  year: 2011
  end-page: 56
  ident: b8
  article-title: SWATS: Wireless sensor networks for steamflood and waterflood pipeline monitoring
  publication-title: IEEE Netw.
– year: 2012
  ident: b4
  article-title: Condition Assessment Technologies for Water Transmission and Distribution Systems
– year: 2008
  ident: b30
  article-title: The steerable pyramid
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b16
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– volume: 58
  start-page: 121
  year: 2016
  end-page: 134
  ident: b25
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit.
– volume: 22
  start-page: 928
  year: 2001
  end-page: 937
  ident: b28
  article-title: Image fusion by using steerable pyramid
  publication-title: Pattern Recognit. Lett.
– year: 2012
  ident: 10.1016/j.measurement.2021.109020_b4
– volume: 14
  start-page: 4122
  issue: 12
  year: 2014
  ident: 10.1016/j.measurement.2021.109020_b11
  article-title: Computational intelligence for urban infrastructure condition assessment: Water transmission and distribution systems
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2336240
– start-page: 20
  year: 2020
  ident: 10.1016/j.measurement.2021.109020_b15
  article-title: Water pipe valve detection by using deep neural networks
– start-page: 770
  year: 2016
  ident: 10.1016/j.measurement.2021.109020_b32
  article-title: Deep residual learning for image recognition
– year: 2020
  ident: 10.1016/j.measurement.2021.109020_b3
– volume: 8
  start-page: 351
  issue: 6
  year: 2011
  ident: 10.1016/j.measurement.2021.109020_b5
  article-title: Leakage detection and location in water distribution systems using a fuzzy-based methodology
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2011.617829
– volume: 46
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2021.109020_b1
  article-title: State of the art review of inspection technologies for condition assessment of water pipes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.05.032
– volume: 13
  start-page: 672
  issue: 4
  year: 2011
  ident: 10.1016/j.measurement.2021.109020_b9
  article-title: Novelty detection for time series data analysis in water distribution systems using support vector machines
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2010.144
– volume: 38
  start-page: 1
  year: 2014
  ident: 10.1016/j.measurement.2021.109020_b34
  article-title: Automated defect detection in sewer closed circuit television images using histograms of oriented gradients and support vector machine
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.10.012
– ident: 10.1016/j.measurement.2021.109020_b27
  doi: 10.1109/ICIP.1995.537667
– volume: 12
  start-page: 1660
  issue: 6
  year: 2012
  ident: 10.1016/j.measurement.2021.109020_b10
  article-title: A new method for detecting leaks in underground water pipelines
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2176484
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.measurement.2021.109020_b16
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 6
  start-page: 70884
  year: 2018
  ident: 10.1016/j.measurement.2021.109020_b17
  article-title: Anomaly detection for HTTP using convolutional autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2881003
– year: 2018
  ident: 10.1016/j.measurement.2021.109020_b20
– start-page: 189
  year: 2017
  ident: 10.1016/j.measurement.2021.109020_b21
– volume: 111
  start-page: 92
  year: 2015
  ident: 10.1016/j.measurement.2021.109020_b14
  article-title: A key frame extraction method for processing greenhouse vegetables production monitoring video
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.12.007
– volume: 17
  start-page: 1967
  issue: 9
  year: 2017
  ident: 10.1016/j.measurement.2021.109020_b19
  article-title: Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in IoT
  publication-title: Sensors
  doi: 10.3390/s17091967
– volume: 20
  year: 2014
  ident: 10.1016/j.measurement.2021.109020_b33
  article-title: Efficient algorithm for crack detection in sewer images from closed-circuit television inspections
  publication-title: J. Infrastruct. Syst.
  doi: 10.1061/(ASCE)IS.1943-555X.0000161
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2021.109020_b24
  article-title: Deep Laplacian auto-encoder and its application into imbalanced fault diagnosis of rotating machinery
  publication-title: Measurement
– start-page: 167
  year: 2017
  ident: 10.1016/j.measurement.2021.109020_b6
  article-title: Acoustic vibration sensor based on macro-bend coated fiber for pipeline leakage detection
– ident: 10.1016/j.measurement.2021.109020_b31
  doi: 10.1007/978-3-030-11726-9_28
– volume: 12
  start-page: 1987
  issue: 6
  year: 2012
  ident: 10.1016/j.measurement.2021.109020_b2
  article-title: State-of-the-art review of technologies for pipe structural health monitoring
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2181161
– year: 2008
  ident: 10.1016/j.measurement.2021.109020_b30
– volume: 58
  start-page: 121
  year: 2016
  ident: 10.1016/j.measurement.2021.109020_b25
  article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.028
– start-page: 1163
  year: 2017
  ident: 10.1016/j.measurement.2021.109020_b18
  article-title: Anomaly detection of logo images in the mobile phone using convolutional autoencoder
– year: 2018
  ident: 10.1016/j.measurement.2021.109020_b26
– start-page: 1
  year: 2020
  ident: 10.1016/j.measurement.2021.109020_b13
  article-title: Automated vision systems for condition assessment of sewer and water pipelines
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 3
  start-page: 203
  issue: 3
  year: 2002
  ident: 10.1016/j.measurement.2021.109020_b29
  article-title: Using multiple orientational filters of steerable pyramid for image registration
  publication-title: Int. J. Multi-Sensor Multi-Source Inf. Fusion
– volume: 134
  start-page: 326
  year: 2019
  ident: 10.1016/j.measurement.2021.109020_b7
  article-title: Multi-sensors based condition monitoring of rotary machines: An approach of multidimensional time-series analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.10.089
– volume: 22
  start-page: 928
  issue: 9
  year: 2001
  ident: 10.1016/j.measurement.2021.109020_b28
  article-title: Image fusion by using steerable pyramid
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(01)00047-2
– volume: 25
  start-page: 50
  issue: 1
  year: 2011
  ident: 10.1016/j.measurement.2021.109020_b8
  article-title: SWATS: Wireless sensor networks for steamflood and waterflood pipeline monitoring
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2011.5687953
– start-page: 2551
  year: 2002
  ident: 10.1016/j.measurement.2021.109020_b12
  article-title: Automated sewer pipe inspection through image processing
– year: 2019
  ident: 10.1016/j.measurement.2021.109020_b23
– year: 2018
  ident: 10.1016/j.measurement.2021.109020_b22
SSID ssj0006396
Score 2.3169818
Snippet Closed-circuit television (CCTV) is being widely adopted in water pipeline inspection. The inspector needs to spend a long time to watch the recorded video...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109020
SubjectTerms Anomaly frame detection
Autoencoder
CCTV inspection
Classification
Deep learning
Steerable pyramid
Water pipeline
Title A steerable pyramid autoencoder based framework for anomaly frame detection of water pipeline CCTV inspection
URI https://dx.doi.org/10.1016/j.measurement.2021.109020
Volume 174
WOSCitedRecordID wos000634792700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB5qV0UfRFfF9cYIvpWUJJPLBHwpZUWXdRGtS30KcwvN0qahTdft3_IXOtckoOKK-BLKkMlM53yd8_Xkm3MAeB0TTOW-iDwUU-FFWUI8zJlSAGQxIimPMp2J6fw0PTvD83n2cTD47s7CXC7TqsJXV1n9X00t26Sx1dHZvzB3-1DZID9Lo8urNLu8Xsvwk5E0nNjoI1H1fkNWJR-RXbNWGStV4gjlt_iocKIsK6Ncr8hyb1pHXDSCOSb5jag0inVZC01Ip9PZuRKw1-aOPrf90IUbdaChl5Sik2i62GP_Zn3qUGUA7YsCTkqio7hf5dStd9Wvo_YLYo6xfZLcl3bhBFtVTLrpRekaT8udfvmyEPYJNrwRBj1VjI65uXM3nchpq9PFIk-RD-PFzNaNU-RFgS7O3u3tpgTQT37ChCwuxqvuy47V6GOtU_U759hKFj-rMdWQYaB5LroBDsI0zvAQHEzeH89PWv8vOV9iIntmjrfBq05V-JsBf82Kekxndh_cs39R4MRA6wEYiOoQ3O0lrjwEt7RwmG0fgtUEtnCDFm6wBzeo4QZbuEEJN2jhZlphCze4LqCGG3RwgwpusIPbI_Dl7fFs-s6zJTw8hsKg8RLKi5hHIhC4yDIaJUqEFSCGsxQzX_hCiLRIwowmhEsqSdOY-KlIVFlTyY1piB6DYbWuxBMgp5sknFEeYUEj4VMaJAKRgLHA5zgNiyOA3RLmzOa3V2VWlrkTMl7kvdXP1ernZvWPQNh2rU2Sl-t0euPslFu2alhoLkH25-5P_637M3Cn-7U8B8NmsxMvwE122ZTbzUsLyR_iH8ZQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+steerable+pyramid+autoencoder+based+framework+for+anomaly+frame+detection+of+water+pipeline+CCTV+inspection&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Jiao%2C+Yutong&rft.au=Rayhana%2C+Rakiba&rft.au=Bin%2C+Junchi&rft.au=Liu%2C+Zheng&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=174&rft_id=info:doi/10.1016%2Fj.measurement.2021.109020&rft.externalDocID=S0263224121000543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon