A hybrid lightweight encoder-decoder network for automatic bridge crack assessment with real-world interference

•An HLEDNet was presented for concrete bridge crack detection and measurement.•The lightweight design was integrated with HLEDNet backbone architecture.•The influence of annotating handwriting interference was highlighted.•Crack information was retrieved by considering the crack depth information.•T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement : journal of the International Measurement Confederation Ročník 216; s. 112892
Hlavní autoři: Deng, Jianghua, Lu, Ye, Lee, Vincent C.S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2023
Témata:
ISSN:0263-2241, 1873-412X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An HLEDNet was presented for concrete bridge crack detection and measurement.•The lightweight design was integrated with HLEDNet backbone architecture.•The influence of annotating handwriting interference was highlighted.•Crack information was retrieved by considering the crack depth information.•The unit conversion from pixel to mm was achieved for practical applications. Although many learning-based studies have been conducted to detect cracks, there are still many problems in practice, such as slow inference speed due to a large number of hyperparameters required in network architectures and compromised detection accuracy in different environments. To address these issues, the current study employed a Hybrid Lightweight Encoder-Decoder Network (HLEDNet) as an ad-hoc crack segmentation and measurement system on real-world images captured from various concrete bridges. The proposed HLEDNet model was trained and tested with 3000 annotated images with further extensive data augmentation, which achieved 86.92%, 85.71%, 86.31, and 86.01% in precision, recall, F1 score, and mean intersection over union (mIoU), respectively. A crack measurement module was proposed using combined postprocessing techniques, where the R-squared values of the regression lines in crack length and average crack width are 0.9857 and 0.9925, respectively. Finally, an experimental study was undertaken to convert the crack measuring unit from pixel to millimetre.
AbstractList •An HLEDNet was presented for concrete bridge crack detection and measurement.•The lightweight design was integrated with HLEDNet backbone architecture.•The influence of annotating handwriting interference was highlighted.•Crack information was retrieved by considering the crack depth information.•The unit conversion from pixel to mm was achieved for practical applications. Although many learning-based studies have been conducted to detect cracks, there are still many problems in practice, such as slow inference speed due to a large number of hyperparameters required in network architectures and compromised detection accuracy in different environments. To address these issues, the current study employed a Hybrid Lightweight Encoder-Decoder Network (HLEDNet) as an ad-hoc crack segmentation and measurement system on real-world images captured from various concrete bridges. The proposed HLEDNet model was trained and tested with 3000 annotated images with further extensive data augmentation, which achieved 86.92%, 85.71%, 86.31, and 86.01% in precision, recall, F1 score, and mean intersection over union (mIoU), respectively. A crack measurement module was proposed using combined postprocessing techniques, where the R-squared values of the regression lines in crack length and average crack width are 0.9857 and 0.9925, respectively. Finally, an experimental study was undertaken to convert the crack measuring unit from pixel to millimetre.
ArticleNumber 112892
Author Lee, Vincent C.S.
Deng, Jianghua
Lu, Ye
Author_xml – sequence: 1
  givenname: Jianghua
  orcidid: 0000-0001-9280-8741
  surname: Deng
  fullname: Deng, Jianghua
  email: dengjh@czust.edu.cn
  organization: Department of Structural Engineering, School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou 213032, China
– sequence: 2
  givenname: Ye
  orcidid: 0000-0002-2319-7681
  surname: Lu
  fullname: Lu, Ye
  organization: Department of Civil Engineering, Monash University, Melbourne, Australia
– sequence: 3
  givenname: Vincent C.S.
  surname: Lee
  fullname: Lee, Vincent C.S.
  organization: Faculty of Information Technology, Monash University, Melbourne, Australia
BookMark eNqNkMtOwzAQRS1UJNrCP5gPSPEjdZIVqipeUiU2ILGzHHvcuk1iZLtU_XsSygKx6mbu6hzNvRM06nwHCN1SMqOEirvtrAUV9wFa6NKMEcZnlLKyYhdoTMuCZzllHyM0JkzwjLGcXqFJjFtCiOCVGCO_wJtjHZzBjVtv0gGGi6HT3kDIDPwk7iAdfNhh6wNW--RblZzGA7YGrIPSO6xihBiHL_DBpQ0OoJqshxqDXZcgWAi9Fa7RpVVNhJvfnKL3x4e35XO2en16WS5WmeaMpkyURBdQCF7mwihiS8i5pnaeay3yoqppBUU9JxaA0LnNjaqM4HUNrNa2IETzKapOXh18jAGs_AyuVeEoKZHDcnIr_ywnh-Xkabmevf_Hapf6xr5LQbnmLMPyZIC-4peDIKN2Q33jAugkjXdnWL4BulKYzg
CitedBy_id crossref_primary_10_1016_j_measurement_2025_117716
crossref_primary_10_1038_s41597_025_04485_z
crossref_primary_10_32604_cmes_2024_048175
crossref_primary_10_1007_s00477_024_02743_x
crossref_primary_10_1016_j_measurement_2024_114168
crossref_primary_10_1177_14759217241261089
crossref_primary_10_1016_j_autcon_2024_105525
crossref_primary_10_1016_j_autcon_2025_106100
crossref_primary_10_1016_j_autcon_2025_106256
crossref_primary_10_1061_JCCEE5_CPENG_6303
crossref_primary_10_1038_s41598_024_80199_3
crossref_primary_10_1109_ACCESS_2024_3416450
crossref_primary_10_1016_j_aei_2024_102650
crossref_primary_10_3390_buildings15020258
crossref_primary_10_1016_j_engappai_2025_111209
crossref_primary_10_1016_j_eswa_2023_121346
crossref_primary_10_1016_j_conbuildmat_2025_143667
crossref_primary_10_1177_14759217241271000
crossref_primary_10_1016_j_cscm_2024_e03711
Cites_doi 10.1016/j.autcon.2021.103831
10.1177/1475921718764873
10.1016/j.patrec.2008.04.005
10.1016/j.autcon.2020.103357
10.3390/s20072069
10.1016/j.autcon.2019.04.014
10.1016/j.autcon.2022.104364
10.1016/j.aei.2018.05.004
10.1016/j.conbuildmat.2020.119096
10.1016/j.measurement.2016.02.044
10.1016/j.istruc.2020.03.010
10.1016/j.tust.2018.04.002
10.1016/j.measurement.2020.108693
10.1109/TKDE.2009.191
10.1016/j.aei.2017.03.003
10.1111/mice.12334
10.1016/j.conbuildmat.2017.04.097
10.1016/j.autcon.2018.11.028
10.1111/mice.12421
10.1109/TPAMI.2017.2699184
10.3390/s21051688
10.1016/j.measurement.2021.109316
10.1016/j.autcon.2011.03.004
10.1109/TIE.2019.2945265
10.1111/mice.12622
10.1016/j.measurement.2021.109877
10.1016/j.autcon.2013.06.011
10.1016/j.autcon.2020.103382
10.1111/mice.12297
10.1016/j.conbuildmat.2019.117367
10.1061/(ASCE)CP.1943-5487.0000854
10.1016/j.measurement.2019.107377
10.1016/j.autcon.2020.103291
10.1109/ICIP.2019.8803154
10.1007/s11771-013-1775-5
10.1111/mice.12433
10.3390/s20071838
10.1016/j.aei.2020.101037
10.1016/j.measurement.2020.108077
10.1007/s11831-018-9263-6
10.1016/j.measurement.2021.109171
10.1111/mice.12319
10.1108/IJSI-06-2019-0061
10.1016/j.conbuildmat.2022.129238
10.1111/mice.12412
10.1088/0964-1726/22/3/035019
10.1016/j.aei.2020.101105
10.1016/j.aei.2015.01.008
10.1109/CVPR.2015.7298965
10.1002/ecj.10151
10.1007/s00138-011-0394-0
10.1016/j.autcon.2019.103019
10.1016/j.aei.2020.101206
10.1016/j.measurement.2020.108698
10.1016/j.measurement.2021.110641
10.1016/j.eng.2018.11.030
10.1109/CVPR.2017.549
10.1177/1369433220986637
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2023.112892
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2023_112892
S0263224123004566
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-680c7e763846da0f8e43c1f54cc6479b19e7b50fee015f4da9d63bbe2bcf700c3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001037985700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Sat Nov 29 07:19:29 EST 2025
Tue Nov 18 22:13:46 EST 2025
Fri Feb 23 02:37:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Automated inspection
Structural health monitoring
Crack measurement
Encoder-decoder architecture
Atrous convolutions
Concrete bridge cracks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-680c7e763846da0f8e43c1f54cc6479b19e7b50fee015f4da9d63bbe2bcf700c3
ORCID 0000-0002-2319-7681
0000-0001-9280-8741
ParticipantIDs crossref_primary_10_1016_j_measurement_2023_112892
crossref_citationtrail_10_1016_j_measurement_2023_112892
elsevier_sciencedirect_doi_10_1016_j_measurement_2023_112892
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Żarski, Wójcik, Książek, Miszczak (b0310) 2021
Deng, Singh, Zhou, Lu, Lee (b0110) 2022; 356
Won, Sim (b0090) 2020; 20
D. Andrushia A, N. Anand, E. Lubloy, G. Prince Arulraj, Deep learning based thermal crack detection on structural concrete exposed to elevated temperature, Adv. Struct. Eng. 24 (2021) 1896–1909. 10.1177/1369433220986637.
Jin, Lee, Hong (b0095) 2020; 110
Li, Zhao, Zhou (b0150) 2019; 34
Huang, Sun, Xue, Wang (b0035) 2017; 32
Jahanshahi, Masri (b0050) 2013; 22
Andrushia, Anand, Arulraj (b0085) 2020; 11
G. Lin, A. Milan, C. Shen, I. Reid, RefineNet: Multi-path refinement networks for high-resolution semantic segmentation, in: Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017. 2017-Janua, 2017, pp. 5168–5177. 10.1109/CVPR.2017.549.
Kim, Cho (b0265) 2019; 26
Ni, Zhang, Chen (b0225) 2019; 34
Li, Bao, Xu, Shu, Zhou, Du, Wang, Zhang (b0320) 2022; 188
Zhang, Wang, Li, Yang, Dai, Peng, Fei, Liu, Li, Chen (b0220) 2017; 32
Park, Eem, Jeon (b0300) 2020; 252
Xu, Zhang (b0045) 2013; 20
Sun, Qian (b0025) 2016; 86
Ren, Huang, Hong, Lu, Yin, Zou, Shen (b0245) 2020; 234
T.G. Mondal, M.R. Jahanshahi, Autonomous vision-based damage chronology for spatiotemporal condition assessment of civil infrastructure using unmanned aerial vehicle, Smart Struct. Syst. 25 (2020) 733–749. 10.12989/sss.2020.25.6.733.
Gao, Yuan, Tong, Yang, Yu (b0165) 2020; 164
Redmon, Divvala, Girshick, Farhadi (b0180) 2016
Andrushia, Thangarajan (b0030) 2017; 42
Xu, Li, Xie, Wu, Wang (b0270) 2021; 178
Liu, Yang, Lau, Wang, Luo, Lee, Ding (b0190) 2020; 35
.
Pan, Yang (b0305) 2010; 22
Weng, Huang, Wang (b0080) 2019; 105
Andrushia, Anand, Neebha, Naser, Lubloy (b0280) 2022; 140
D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: ArXiv Prepr. ArXiv1412.6980, 2014.
Simonyan, Zisserman (b0335) 2014; ArXiv1409.1556
Y. Wang, Q. Zhou, J. Liu, J. Xiong, G. Gao, X. Wu, L.J. Latecki, Lednet: A lightweight encoder-decoder network for real-time semantic segmentation, in: Proc. - Int. Conf. Image Process. ICIP. 2019-Septe, 2019, pp. 1860–1864. 10.1109/ICIP.2019.8803154.
Choi, Cha (b0250) 2020; 67
Hüthwohl, Brilakis (b0115) 2018; 37
Yamaguchi, Hashimoto (b0055) 2009; 92
J. Deng, Y. Lu, V.C.S. Lee, Image-based crack identification for concrete bridges using region-based convolutional neural network, in: 9th Int. Conf. Struct. Heal. Monit. Intell. Infrastruct. Transf. Res. into Pract. SHMII 2019 - Conf. Proc., 2019.
Hou, Dong, Wang, Wu (b0315) 2020; 119
Brostow, Fauqueur, Cipolla (b0350) 2009; 30
Deng, Lu, Lee (b0185) 2021; 20
Spencer, Hoskere, Narazaki (b0125) 2019; 5
I. Goodfellow, Y. Bengio, A. Courville, Deep learning, 2017.
Deng, Lu, Lee (b0210) 2020; 35
Li, Li, Zhou, Liu, Ren (b0255) 2021; 176
J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for Semantic Segmentation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3431–3440.
Yang, Li, Yu, Luo, Huang, Yang (b0015) 2018; 33
Zhu, German, Brilakis (b0060) 2011; 20
Wang, Zhang, Wang, Braham, Qiu (b0070) 2018; 33
Koch, Georgieva, Kasireddy, Akinci, Fieguth (b0010) 2015; 29
Diana Andrushia, Anand, Prince Arulraj (b0100) 2020; 27
Zhang, Li, Jia, Ma, Luo, Li (b0345) 2020; 152
Ali, Alnajjar, Al Jassmi, Gochoo, Khan, Serhani (b0140) 2021; 21
Pan, Zhang, Zhang (b0285) 2020; 119
F. Yu, V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, in: ArXiv Prepr. ArXiv1511.07122, 2016: p. arXiv Prepr. arXiv1511.07122.
Wang, Liu, Zheng, Yang, Zou (b0135) 2020; 43
Ali, Kang, Suh, Cha (b0200) 2021; 130
H. wei Huang, Q. tong Li, D. ming Zhang, Deep learning based image recognition for crack and leakage defects of metro shield tunnel, Tunn. Undergr. Sp. Technol. 77 (2018) 166–176. 10.1016/j.tust.2018.04.002.
Adhikari, Moselhi, Bagchi (b0005) 2014; 39
Li, Xie, Gong, Yu, Xu, Sun, Wang (b0175) 2021; 47
Kang, Benipal, Gopal, Cha (b0295) 2020; 118
Alipour, Harris, Miller (b0230) 2019; 33
Chen, Zhu, Papandreou, Schroff, Adam (b0375) 2018
Xu, Bao, Chen, Zuo, Li (b0205) 2019; 18
Li, Liu, Ren, Qiao, Ma, Wan (b0290) 2021; 170
Wang, Song, Liu, Dong, Yan, Jiang (b0260) 2021; 170
Lee, Hwang, Choi, Choi (b0240) 2020; 27
Chow, Su, Wu, Tan, Mao, Wang (b0155) 2020; 45
Jahanshahi, Masri, Padgett, Sukhatme (b0065) 2013; 24
Tong, Gao, Zhang (b0215) 2017; 146
Cha, Choi, Suh, Mahmoudkhani, Büyüköztürk (b0160) 2018; 33
Nigam, Singh (b0040) 2020; 25
Chen, Liang, Gu, Zhang, Deng, Li (b0105) 2021; 184
Dung, Anh (b0235) 2019; 99
Kim, Yoon, Sim (b0020) 2020; 27
Zhang, Yuen (b0195) 2021
Feng, Zhang, Wang, Wang, Li (b0380) 2020; 20
Hoskere, Narazaki, Hoang, Spencer (b0145) 2018; ArXiv1805.01055
L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, in: IEEE Trans. Pattern Anal. Mach. Intell., 2018, pp. 834–848. 10.1109/TPAMI.2017.2699184.
Payab, Abbasina, Khanzadi (b0075) 2019; 26
Xu (10.1016/j.measurement.2023.112892_b0205) 2019; 18
Jin (10.1016/j.measurement.2023.112892_b0095) 2020; 110
10.1016/j.measurement.2023.112892_b0275
Pan (10.1016/j.measurement.2023.112892_b0285) 2020; 119
Huang (10.1016/j.measurement.2023.112892_b0035) 2017; 32
Li (10.1016/j.measurement.2023.112892_b0255) 2021; 176
Choi (10.1016/j.measurement.2023.112892_b0250) 2020; 67
Li (10.1016/j.measurement.2023.112892_b0290) 2021; 170
Simonyan (10.1016/j.measurement.2023.112892_b0335) 2014; ArXiv1409.1556
Jahanshahi (10.1016/j.measurement.2023.112892_b0065) 2013; 24
Park (10.1016/j.measurement.2023.112892_b0300) 2020; 252
Chen (10.1016/j.measurement.2023.112892_b0105) 2021; 184
Żarski (10.1016/j.measurement.2023.112892_b0310) 2021
Zhu (10.1016/j.measurement.2023.112892_b0060) 2011; 20
Nigam (10.1016/j.measurement.2023.112892_b0040) 2020; 25
Hou (10.1016/j.measurement.2023.112892_b0315) 2020; 119
10.1016/j.measurement.2023.112892_b0340
Kang (10.1016/j.measurement.2023.112892_b0295) 2020; 118
Feng (10.1016/j.measurement.2023.112892_b0380) 2020; 20
Liu (10.1016/j.measurement.2023.112892_b0190) 2020; 35
Adhikari (10.1016/j.measurement.2023.112892_b0005) 2014; 39
Li (10.1016/j.measurement.2023.112892_b0175) 2021; 47
Ren (10.1016/j.measurement.2023.112892_b0245) 2020; 234
Chow (10.1016/j.measurement.2023.112892_b0155) 2020; 45
Brostow (10.1016/j.measurement.2023.112892_b0350) 2009; 30
Deng (10.1016/j.measurement.2023.112892_b0110) 2022; 356
Li (10.1016/j.measurement.2023.112892_b0320) 2022; 188
Deng (10.1016/j.measurement.2023.112892_b0210) 2020; 35
Kim (10.1016/j.measurement.2023.112892_b0020) 2020; 27
Dung (10.1016/j.measurement.2023.112892_b0235) 2019; 99
Alipour (10.1016/j.measurement.2023.112892_b0230) 2019; 33
Hoskere (10.1016/j.measurement.2023.112892_b0145) 2018; ArXiv1805.01055
10.1016/j.measurement.2023.112892_b0130
10.1016/j.measurement.2023.112892_b0330
Andrushia (10.1016/j.measurement.2023.112892_b0085) 2020; 11
Andrushia (10.1016/j.measurement.2023.112892_b0280) 2022; 140
10.1016/j.measurement.2023.112892_b0170
10.1016/j.measurement.2023.112892_b0370
Sun (10.1016/j.measurement.2023.112892_b0025) 2016; 86
Yang (10.1016/j.measurement.2023.112892_b0015) 2018; 33
Chen (10.1016/j.measurement.2023.112892_b0375) 2018
Zhang (10.1016/j.measurement.2023.112892_b0195) 2021
Andrushia (10.1016/j.measurement.2023.112892_b0030) 2017; 42
Wang (10.1016/j.measurement.2023.112892_b0135) 2020; 43
Gao (10.1016/j.measurement.2023.112892_b0165) 2020; 164
Deng (10.1016/j.measurement.2023.112892_b0185) 2021; 20
10.1016/j.measurement.2023.112892_b0325
Tong (10.1016/j.measurement.2023.112892_b0215) 2017; 146
10.1016/j.measurement.2023.112892_b0365
Spencer (10.1016/j.measurement.2023.112892_b0125) 2019; 5
Koch (10.1016/j.measurement.2023.112892_b0010) 2015; 29
Hüthwohl (10.1016/j.measurement.2023.112892_b0115) 2018; 37
10.1016/j.measurement.2023.112892_b0360
10.1016/j.measurement.2023.112892_b0120
Xu (10.1016/j.measurement.2023.112892_b0045) 2013; 20
Ali (10.1016/j.measurement.2023.112892_b0140) 2021; 21
Cha (10.1016/j.measurement.2023.112892_b0160) 2018; 33
Yamaguchi (10.1016/j.measurement.2023.112892_b0055) 2009; 92
Redmon (10.1016/j.measurement.2023.112892_b0180) 2016
Xu (10.1016/j.measurement.2023.112892_b0270) 2021; 178
Lee (10.1016/j.measurement.2023.112892_b0240) 2020; 27
Kim (10.1016/j.measurement.2023.112892_b0265) 2019; 26
Diana Andrushia (10.1016/j.measurement.2023.112892_b0100) 2020; 27
Wang (10.1016/j.measurement.2023.112892_b0070) 2018; 33
Pan (10.1016/j.measurement.2023.112892_b0305) 2010; 22
Ali (10.1016/j.measurement.2023.112892_b0200) 2021; 130
Weng (10.1016/j.measurement.2023.112892_b0080) 2019; 105
Jahanshahi (10.1016/j.measurement.2023.112892_b0050) 2013; 22
Payab (10.1016/j.measurement.2023.112892_b0075) 2019; 26
Li (10.1016/j.measurement.2023.112892_b0150) 2019; 34
Ni (10.1016/j.measurement.2023.112892_b0225) 2019; 34
Zhang (10.1016/j.measurement.2023.112892_b0345) 2020; 152
Wang (10.1016/j.measurement.2023.112892_b0260) 2021; 170
Won (10.1016/j.measurement.2023.112892_b0090) 2020; 20
Zhang (10.1016/j.measurement.2023.112892_b0220) 2017; 32
10.1016/j.measurement.2023.112892_b0355
References_xml – volume: 26
  year: 2019
  ident: b0265
  article-title: Image-based concrete crack assessment using mask and region-based convolutional neural network
  publication-title: Struct. Control Heal. Monit.
– volume: 18
  start-page: 653
  year: 2019
  end-page: 674
  ident: b0205
  article-title: Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images
  publication-title: Struct. Heal. Monit.
– volume: 11
  start-page: 395
  year: 2020
  end-page: 409
  ident: b0085
  article-title: Anisotropic diffusion based denoising on concrete images and surface crack segmentation
  publication-title: Int. J. Struct. Integr.
– volume: 234
  year: 2020
  ident: b0245
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Constr. Build. Mater.
– reference: J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for Semantic Segmentation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3431–3440.
– start-page: 779
  year: 2016
  end-page: 788
  ident: b0180
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit
– start-page: 801
  year: 2018
  end-page: 818
  ident: b0375
  article-title: Encoder-Decoder with Atrous Separable Convolution for Semantic
  publication-title: Eur. Conf. Comput. Vis.
– volume: 27
  start-page: 1
  year: 2020
  end-page: 20
  ident: b0100
  article-title: A novel approach for thermal crack detection and quantification in structural concrete using ripplet transform
  publication-title: Struct. Control Heal. Monit.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 22
  ident: b0140
  article-title: Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures
  publication-title: Sensors
– reference: I. Goodfellow, Y. Bengio, A. Courville, Deep learning, 2017.
– volume: 39
  start-page: 180
  year: 2014
  end-page: 194
  ident: b0005
  article-title: Image-based retrieval of concrete crack properties for bridge inspection
  publication-title: Autom. Constr.
– volume: 184
  year: 2021
  ident: b0105
  article-title: An improved minimal path selection approach with new strategies for pavement crack segmentation
  publication-title: Measurement
– volume: 99
  start-page: 52
  year: 2019
  end-page: 58
  ident: b0235
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. Constr.
– volume: 25
  start-page: 436
  year: 2020
  end-page: 447
  ident: b0040
  article-title: Crack detection in a beam using wavelet transform and photographic measurements
  publication-title: Structures
– volume: 252
  year: 2020
  ident: b0300
  article-title: Concrete crack detection and quantification using deep learning and structured light
  publication-title: Constr. Build. Mater.
– volume: 35
  year: 2020
  ident: b0210
  article-title: Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 32
  start-page: 188
  year: 2017
  end-page: 201
  ident: b0035
  article-title: Inspection equipment study for subway tunnel defects by grey-scale image processing
  publication-title: Adv. Eng. Informatics.
– volume: 86
  start-page: 26
  year: 2016
  end-page: 40
  ident: b0025
  article-title: Multi-scale wavelet transform filtering of non-uniform pavement surface image background for automated pavement distress identification
  publication-title: Measurement
– volume: 27
  year: 2020
  ident: b0240
  article-title: Estimation of crack width based on shape-sensitive kernels and semantic segmentation
  publication-title: Struct. Control Heal. Monit.
– volume: 152
  year: 2020
  ident: b0345
  article-title: Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
  publication-title: Measurement
– volume: 33
  start-page: 1090
  year: 2018
  end-page: 1109
  ident: b0015
  article-title: Automatic pixel-level crack detection and measurement using fully convolutional network
  publication-title: Comput. Civ. Infrastruct. Eng.
– reference: J. Deng, Y. Lu, V.C.S. Lee, Image-based crack identification for concrete bridges using region-based convolutional neural network, in: 9th Int. Conf. Struct. Heal. Monit. Intell. Infrastruct. Transf. Res. into Pract. SHMII 2019 - Conf. Proc., 2019.
– volume: 146
  start-page: 775
  year: 2017
  end-page: 787
  ident: b0215
  article-title: Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks
  publication-title: Constr. Build. Mater.
– volume: 20
  year: 2021
  ident: b0185
  article-title: Imaging-based crack detection on concrete surfaces using You Only Look Once network
  publication-title: Struct. Heal. Monit.
– volume: 119
  year: 2020
  ident: b0315
  article-title: Inspection of surface defects on stay cables using a robot and transfer learning
  publication-title: Autom. Constr.
– volume: 24
  start-page: 227
  year: 2013
  end-page: 241
  ident: b0065
  article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception
  publication-title: Mach. Vis. Appl.
– volume: 42
  start-page: 671
  year: 2017
  end-page: 685
  ident: b0030
  article-title: An efficient visual saliency detection model based on Ripplet transform
  publication-title: Sadhana - Acad. Proc. Eng. Sci.
– volume: 92
  start-page: 1
  year: 2009
  end-page: 12
  ident: b0055
  article-title: Practical image measurement of crack width for real concrete structure
  publication-title: Electron. Commun. Japan
– start-page: 1
  year: 2021
  end-page: 17
  ident: b0195
  article-title: Crack detection using fusion features-based broad learning system and image processing
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 178
  year: 2021
  ident: b0270
  article-title: Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN
  publication-title: Measurement
– reference: L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, in: IEEE Trans. Pattern Anal. Mach. Intell., 2018, pp. 834–848. 10.1109/TPAMI.2017.2699184.
– volume: 43
  year: 2020
  ident: b0135
  article-title: A smart surface inspection system using faster R-CNN in cloud-edge computing environment
  publication-title: Adv. Eng. Inform.
– volume: 119
  year: 2020
  ident: b0285
  article-title: A spatial-channel hierarchical deep learning network for pixel-level automated crack detection
  publication-title: Autom. Constr.
– reference: H. wei Huang, Q. tong Li, D. ming Zhang, Deep learning based image recognition for crack and leakage defects of metro shield tunnel, Tunn. Undergr. Sp. Technol. 77 (2018) 166–176. 10.1016/j.tust.2018.04.002.
– volume: 33
  start-page: 110
  year: 2018
  end-page: 123
  ident: b0070
  article-title: Pavement crack width measurement based on Laplace’s equation for continuity and unambiguity
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 45
  year: 2020
  ident: b0155
  article-title: Anomaly detection of defects on concrete structures with the convolutional autoencoder
  publication-title: Adv. Eng. Inform.
– volume: 176
  year: 2021
  ident: b0255
  article-title: Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and context encoder network
  publication-title: Measurement
– reference: Y. Wang, Q. Zhou, J. Liu, J. Xiong, G. Gao, X. Wu, L.J. Latecki, Lednet: A lightweight encoder-decoder network for real-time semantic segmentation, in: Proc. - Int. Conf. Image Process. ICIP. 2019-Septe, 2019, pp. 1860–1864. 10.1109/ICIP.2019.8803154.
– volume: 47
  year: 2021
  ident: b0175
  article-title: Automatic defect detection of metro tunnel surfaces using a vision-based inspection system
  publication-title: Adv. Eng. Inform.
– volume: ArXiv1409.1556
  year: 2014
  ident: b0335
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: ArXiv Prepr.
– volume: 140
  year: 2022
  ident: b0280
  article-title: Autonomous detection of concrete damage under fire conditions
  publication-title: Autom. Constr.
– volume: 20
  start-page: 874
  year: 2011
  end-page: 883
  ident: b0060
  article-title: Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation
  publication-title: Autom. Constr.
– volume: 105
  year: 2019
  ident: b0080
  article-title: Segment-based pavement crack quantification
  publication-title: Autom. Constr.
– volume: 34
  start-page: 616
  year: 2019
  end-page: 634
  ident: b0150
  article-title: Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network
  publication-title: Comput. Civ. Infrastruct. Eng.
– reference: D. Andrushia A, N. Anand, E. Lubloy, G. Prince Arulraj, Deep learning based thermal crack detection on structural concrete exposed to elevated temperature, Adv. Struct. Eng. 24 (2021) 1896–1909. 10.1177/1369433220986637.
– volume: 34
  start-page: 367
  year: 2019
  end-page: 384
  ident: b0225
  article-title: Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: ArXiv1805.01055
  year: 2018
  ident: b0145
  article-title: Vision-based structural inspection using multiscale deep convolutional neural networks
  publication-title: ArXiv Prepr.
– volume: 32
  start-page: 805
  year: 2017
  end-page: 819
  ident: b0220
  article-title: Automated pixel-level pavement crack detection on 3D Asphalt surfaces using a deep-learning network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 26
  start-page: 347
  year: 2019
  end-page: 365
  ident: b0075
  article-title: A brief review and a new graph-based image analysis for concrete crack quantification
  publication-title: Arch. Comput. Methods Eng.
– volume: 5
  start-page: 199
  year: 2019
  end-page: 222
  ident: b0125
  article-title: Advances in computer vision-based civil infrastructure inspection and monitoring
  publication-title: Engineering
– volume: 33
  start-page: 731
  year: 2018
  end-page: 747
  ident: b0160
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 170
  year: 2021
  ident: b0260
  article-title: RENet: Rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks
  publication-title: Measurement
– volume: 20
  year: 2020
  ident: b0090
  article-title: Automated transverse crack mapping system with optical sensors and big data analytics
  publication-title: Sensors (Switzerland)
– reference: T.G. Mondal, M.R. Jahanshahi, Autonomous vision-based damage chronology for spatiotemporal condition assessment of civil infrastructure using unmanned aerial vehicle, Smart Struct. Syst. 25 (2020) 733–749. 10.12989/sss.2020.25.6.733.
– volume: 33
  start-page: 04019040
  year: 2019
  ident: b0230
  article-title: Robust pixel-level crack detection using deep fully convolutional neural networks
  publication-title: J. Comput. Civ. Eng.
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b0305
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 110
  year: 2020
  ident: b0095
  article-title: A vision-based approach for autonomous crack width measurement with flexible kernel
  publication-title: Autom. Constr.
– volume: 118
  year: 2020
  ident: b0295
  article-title: Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning
  publication-title: Autom. Constr.
– volume: 20
  year: 2020
  ident: b0380
  article-title: Automatic pixel-level crack detection on dam surface using deep convolutional network
  publication-title: Sensors (Switzerland)
– volume: 356
  year: 2022
  ident: b0110
  article-title: Review on computer vision-based crack detection and quantification methodologies for civil structures
  publication-title: Constr. Build. Mater.
– reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: ArXiv Prepr. ArXiv1412.6980, 2014.
– volume: 130
  year: 2021
  ident: b0200
  article-title: Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures
  publication-title: Autom. Constr.
– reference: F. Yu, V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, in: ArXiv Prepr. ArXiv1511.07122, 2016: p. arXiv Prepr. arXiv1511.07122.
– volume: 35
  start-page: 1291
  year: 2020
  end-page: 1305
  ident: b0190
  article-title: Automated pavement crack detection and segmentation based on two-step convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 30
  start-page: 88
  year: 2009
  end-page: 97
  ident: b0350
  article-title: Semantic object classes in video:a high-definition ground truth database
  publication-title: Pattern Recognit. Lett.
– reference: G. Lin, A. Milan, C. Shen, I. Reid, RefineNet: Multi-path refinement networks for high-resolution semantic segmentation, in: Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017. 2017-Janua, 2017, pp. 5168–5177. 10.1109/CVPR.2017.549.
– volume: 170
  year: 2021
  ident: b0290
  article-title: Automatic recognition and analysis system of asphalt pavement cracks using interleaved low-rank group convolution hybrid deep network and SegNet fusing dense condition random field
  publication-title: Measurement
– reference: .
– volume: 22
  year: 2013
  ident: b0050
  article-title: A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation
  publication-title: Smart Mater. Struct.
– volume: 20
  start-page: 2605
  year: 2013
  end-page: 2613
  ident: b0045
  article-title: Crack detection of reinforced concrete bridge using video image
  publication-title: J. Cent. South Univ.
– start-page: 1
  year: 2021
  end-page: 16
  ident: b0310
  article-title: Finicky transfer learning—a method of pruning convolutional neural networks for cracks classification on edge devices
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 67
  start-page: 8016
  year: 2020
  end-page: 8025
  ident: b0250
  article-title: SDDNet: real-time crack segmentation
  publication-title: IEEE Trans. Ind. Electron.
– volume: 37
  start-page: 150
  year: 2018
  end-page: 162
  ident: b0115
  article-title: Detecting healthy concrete surfaces
  publication-title: Adv. Eng. Informatics.
– volume: 27
  year: 2020
  ident: b0020
  article-title: Automated bridge component recognition from point clouds using deep learning
  publication-title: Struct. Control Heal. Monit.
– volume: 164
  year: 2020
  ident: b0165
  article-title: Autonomous pavement distress detection using ground penetrating radar and region-based deep learning
  publication-title: Measurement
– volume: 29
  start-page: 196
  year: 2015
  end-page: 210
  ident: b0010
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Adv. Eng. Inform.
– volume: 188
  year: 2022
  ident: b0320
  article-title: A deep residual neural network framework with transfer learning for concrete dams patch-level crack classification and weakly-supervised localization
  publication-title: Measurement
– volume: 130
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0200
  article-title: Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103831
– volume: 18
  start-page: 653
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0205
  article-title: Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images
  publication-title: Struct. Heal. Monit.
  doi: 10.1177/1475921718764873
– ident: 10.1016/j.measurement.2023.112892_b0340
– volume: 30
  start-page: 88
  year: 2009
  ident: 10.1016/j.measurement.2023.112892_b0350
  article-title: Semantic object classes in video:a high-definition ground truth database
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.04.005
– volume: 119
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0285
  article-title: A spatial-channel hierarchical deep learning network for pixel-level automated crack detection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103357
– volume: 20
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0185
  article-title: Imaging-based crack detection on concrete surfaces using You Only Look Once network
  publication-title: Struct. Heal. Monit.
– volume: 20
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0380
  article-title: Automatic pixel-level crack detection on dam surface using deep convolutional network
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s20072069
– volume: 105
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0080
  article-title: Segment-based pavement crack quantification
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.014
– ident: 10.1016/j.measurement.2023.112892_b0170
– volume: 140
  year: 2022
  ident: 10.1016/j.measurement.2023.112892_b0280
  article-title: Autonomous detection of concrete damage under fire conditions
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104364
– volume: 37
  start-page: 150
  year: 2018
  ident: 10.1016/j.measurement.2023.112892_b0115
  article-title: Detecting healthy concrete surfaces
  publication-title: Adv. Eng. Informatics.
  doi: 10.1016/j.aei.2018.05.004
– volume: 26
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0265
  article-title: Image-based concrete crack assessment using mask and region-based convolutional neural network
  publication-title: Struct. Control Heal. Monit.
– volume: 252
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0300
  article-title: Concrete crack detection and quantification using deep learning and structured light
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119096
– volume: 86
  start-page: 26
  year: 2016
  ident: 10.1016/j.measurement.2023.112892_b0025
  article-title: Multi-scale wavelet transform filtering of non-uniform pavement surface image background for automated pavement distress identification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.02.044
– volume: 25
  start-page: 436
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0040
  article-title: Crack detection in a beam using wavelet transform and photographic measurements
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.03.010
– start-page: 801
  year: 2018
  ident: 10.1016/j.measurement.2023.112892_b0375
  article-title: Encoder-Decoder with Atrous Separable Convolution for Semantic
– ident: 10.1016/j.measurement.2023.112892_b0120
  doi: 10.1016/j.tust.2018.04.002
– volume: 170
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0290
  article-title: Automatic recognition and analysis system of asphalt pavement cracks using interleaved low-rank group convolution hybrid deep network and SegNet fusing dense condition random field
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108693
– volume: 35
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0210
  article-title: Concrete crack detection with handwriting script interferences using faster region-based convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 22
  start-page: 1345
  year: 2010
  ident: 10.1016/j.measurement.2023.112892_b0305
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: ArXiv1409.1556
  year: 2014
  ident: 10.1016/j.measurement.2023.112892_b0335
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: ArXiv Prepr.
– volume: ArXiv1805.01055
  year: 2018
  ident: 10.1016/j.measurement.2023.112892_b0145
  article-title: Vision-based structural inspection using multiscale deep convolutional neural networks
  publication-title: ArXiv Prepr.
– volume: 32
  start-page: 188
  year: 2017
  ident: 10.1016/j.measurement.2023.112892_b0035
  article-title: Inspection equipment study for subway tunnel defects by grey-scale image processing
  publication-title: Adv. Eng. Informatics.
  doi: 10.1016/j.aei.2017.03.003
– volume: 27
  start-page: 1
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0100
  article-title: A novel approach for thermal crack detection and quantification in structural concrete using ripplet transform
  publication-title: Struct. Control Heal. Monit.
– volume: 33
  start-page: 731
  year: 2018
  ident: 10.1016/j.measurement.2023.112892_b0160
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12334
– volume: 146
  start-page: 775
  year: 2017
  ident: 10.1016/j.measurement.2023.112892_b0215
  article-title: Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.04.097
– volume: 99
  start-page: 52
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0235
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.11.028
– start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0310
  article-title: Finicky transfer learning—a method of pruning convolutional neural networks for cracks classification on edge devices
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 34
  start-page: 367
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0225
  article-title: Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12421
– ident: 10.1016/j.measurement.2023.112892_b0360
  doi: 10.1109/TPAMI.2017.2699184
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0140
  article-title: Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures
  publication-title: Sensors
  doi: 10.3390/s21051688
– volume: 178
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0270
  article-title: Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109316
– volume: 20
  start-page: 874
  year: 2011
  ident: 10.1016/j.measurement.2023.112892_b0060
  article-title: Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2011.03.004
– volume: 67
  start-page: 8016
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0250
  article-title: SDDNet: real-time crack segmentation
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2945265
– volume: 35
  start-page: 1291
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0190
  article-title: Automated pavement crack detection and segmentation based on two-step convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12622
– volume: 184
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0105
  article-title: An improved minimal path selection approach with new strategies for pavement crack segmentation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109877
– volume: 39
  start-page: 180
  year: 2014
  ident: 10.1016/j.measurement.2023.112892_b0005
  article-title: Image-based retrieval of concrete crack properties for bridge inspection
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.06.011
– volume: 119
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0315
  article-title: Inspection of surface defects on stay cables using a robot and transfer learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103382
– volume: 32
  start-page: 805
  year: 2017
  ident: 10.1016/j.measurement.2023.112892_b0220
  article-title: Automated pixel-level pavement crack detection on 3D Asphalt surfaces using a deep-learning network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12297
– volume: 234
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0245
  article-title: Image-based concrete crack detection in tunnels using deep fully convolutional networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117367
– volume: 33
  start-page: 04019040
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0230
  article-title: Robust pixel-level crack detection using deep fully convolutional neural networks
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000854
– volume: 152
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0345
  article-title: Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107377
– volume: 42
  start-page: 671
  year: 2017
  ident: 10.1016/j.measurement.2023.112892_b0030
  article-title: An efficient visual saliency detection model based on Ripplet transform
  publication-title: Sadhana - Acad. Proc. Eng. Sci.
– ident: 10.1016/j.measurement.2023.112892_b0130
– volume: 118
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0295
  article-title: Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103291
– ident: 10.1016/j.measurement.2023.112892_b0325
  doi: 10.1109/ICIP.2019.8803154
– ident: 10.1016/j.measurement.2023.112892_b0365
– volume: 20
  start-page: 2605
  year: 2013
  ident: 10.1016/j.measurement.2023.112892_b0045
  article-title: Crack detection of reinforced concrete bridge using video image
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-013-1775-5
– volume: 34
  start-page: 616
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0150
  article-title: Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12433
– volume: 20
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0090
  article-title: Automated transverse crack mapping system with optical sensors and big data analytics
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s20071838
– volume: 27
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0240
  article-title: Estimation of crack width based on shape-sensitive kernels and semantic segmentation
  publication-title: Struct. Control Heal. Monit.
– volume: 43
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0135
  article-title: A smart surface inspection system using faster R-CNN in cloud-edge computing environment
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101037
– start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0195
  article-title: Crack detection using fusion features-based broad learning system and image processing
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 164
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0165
  article-title: Autonomous pavement distress detection using ground penetrating radar and region-based deep learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108077
– volume: 26
  start-page: 347
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0075
  article-title: A brief review and a new graph-based image analysis for concrete crack quantification
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-018-9263-6
– volume: 176
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0255
  article-title: Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and context encoder network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109171
– volume: 33
  start-page: 110
  year: 2018
  ident: 10.1016/j.measurement.2023.112892_b0070
  article-title: Pavement crack width measurement based on Laplace’s equation for continuity and unambiguity
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12319
– ident: 10.1016/j.measurement.2023.112892_b0355
– volume: 11
  start-page: 395
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0085
  article-title: Anisotropic diffusion based denoising on concrete images and surface crack segmentation
  publication-title: Int. J. Struct. Integr.
  doi: 10.1108/IJSI-06-2019-0061
– volume: 356
  year: 2022
  ident: 10.1016/j.measurement.2023.112892_b0110
  article-title: Review on computer vision-based crack detection and quantification methodologies for civil structures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129238
– volume: 33
  start-page: 1090
  year: 2018
  ident: 10.1016/j.measurement.2023.112892_b0015
  article-title: Automatic pixel-level crack detection and measurement using fully convolutional network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12412
– volume: 22
  year: 2013
  ident: 10.1016/j.measurement.2023.112892_b0050
  article-title: A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/3/035019
– volume: 45
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0155
  article-title: Anomaly detection of defects on concrete structures with the convolutional autoencoder
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101105
– volume: 29
  start-page: 196
  year: 2015
  ident: 10.1016/j.measurement.2023.112892_b0010
  article-title: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2015.01.008
– ident: 10.1016/j.measurement.2023.112892_b0330
  doi: 10.1109/CVPR.2015.7298965
– volume: 92
  start-page: 1
  year: 2009
  ident: 10.1016/j.measurement.2023.112892_b0055
  article-title: Practical image measurement of crack width for real concrete structure
  publication-title: Electron. Commun. Japan
  doi: 10.1002/ecj.10151
– volume: 24
  start-page: 227
  year: 2013
  ident: 10.1016/j.measurement.2023.112892_b0065
  article-title: An innovative methodology for detection and quantification of cracks through incorporation of depth perception
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-011-0394-0
– volume: 27
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0020
  article-title: Automated bridge component recognition from point clouds using deep learning
  publication-title: Struct. Control Heal. Monit.
– volume: 110
  year: 2020
  ident: 10.1016/j.measurement.2023.112892_b0095
  article-title: A vision-based approach for autonomous crack width measurement with flexible kernel
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.103019
– start-page: 779
  year: 2016
  ident: 10.1016/j.measurement.2023.112892_b0180
  article-title: You only look once: Unified, real-time object detection
– volume: 47
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0175
  article-title: Automatic defect detection of metro tunnel surfaces using a vision-based inspection system
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101206
– volume: 170
  year: 2021
  ident: 10.1016/j.measurement.2023.112892_b0260
  article-title: RENet: Rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108698
– volume: 188
  year: 2022
  ident: 10.1016/j.measurement.2023.112892_b0320
  article-title: A deep residual neural network framework with transfer learning for concrete dams patch-level crack classification and weakly-supervised localization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110641
– volume: 5
  start-page: 199
  year: 2019
  ident: 10.1016/j.measurement.2023.112892_b0125
  article-title: Advances in computer vision-based civil infrastructure inspection and monitoring
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.11.030
– ident: 10.1016/j.measurement.2023.112892_b0370
  doi: 10.1109/CVPR.2017.549
– ident: 10.1016/j.measurement.2023.112892_b0275
  doi: 10.1177/1369433220986637
SSID ssj0006396
Score 2.4546697
Snippet •An HLEDNet was presented for concrete bridge crack detection and measurement.•The lightweight design was integrated with HLEDNet backbone architecture.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112892
SubjectTerms Atrous convolutions
Automated inspection
Concrete bridge cracks
Crack measurement
Encoder-decoder architecture
Structural health monitoring
Title A hybrid lightweight encoder-decoder network for automatic bridge crack assessment with real-world interference
URI https://dx.doi.org/10.1016/j.measurement.2023.112892
Volume 216
WOSCitedRecordID wos001037985700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWWFhA8ICiglpuMxFvkKImT2JZ4WUERIKiQKGjfosRxemGbrdLdUn6Kb2R8SWIKqAWJl-wqWk-yO2dnTkYzxwg9i-qalzzOSSNrSlIVN6RqMkpkDumiyhRjojabTbCdHT6biQ-Tyfd-FuZ0ztqWn52J4__qajgHztajs3_h7sEonID34HQ4gtvheCnHT4P9b3oMK5jr5-6vpvQZaLnKWnWkVuY1aG33t-2hXC0XVrjVTW_JrpRfgnLQ7LTFWmCXc2IEVo3GROcGBX12-34sOJpSgydLMTZp9tVH_8Nm7lBrgPptAS-V6xYGBO_tr4b88W5l8saASNdL9PmglcZW-DH0axkJHfpe-5CX5JRoUuHH5yT2IyzwQ253z_sl-Ns6xGF4NN5_qK8Sjmt-Ftw-lwiH9sS-8-2w8EwV2lRhTV1B6wnLBETR9emb7dnbIfcD38ttVc9-j-vo6dhR-If7-j0j8ljO7m10yz2e4KmF1R00Ue0GuumJVm6ga6ZpWJ7cRYsptlDDHtTwOahhBzUMUMMD1LCFGjZQwyPUsIYaHqGGfajdQ59ebe--eE3cBh5E0iRekpxHkinIYEBy6zJquEqpjJsslTJPmahioViVRY1SQEqbtC5FndOqUkklGxZFkt5Ha-2iVZsIR2CAqixmPC7ThkYCAkwmBc8VExEr8y3E-x-xkE7dXm-yMi8udOYWSoalx1bi5TKLnveeKhxXtRy0ADRevPzBv1zzIbox_mkeobVlt1KP0VV5ujw46Z44KP4A-2rDyQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+lightweight+encoder-decoder+network+for+automatic+bridge+crack+assessment+with+real-world+interference&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Deng%2C+Jianghua&rft.au=Lu%2C+Ye&rft.au=Lee%2C+Vincent+C.S.&rft.date=2023-07-01&rft.issn=0263-2241&rft.volume=216&rft.spage=112892&rft_id=info:doi/10.1016%2Fj.measurement.2023.112892&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2023_112892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon