Computational fluid dynamics modeling of a discrete feed atomic layer deposition reactor: Application to reactor design and operation
Novel transistor fabrication methods such as area-selective atomic layer deposition (AS-ALD) are crucial to improving nanopatterning, which is essential for facilitating transistor stacking in semiconducting wafers. However, transistor surfaces are subjected to nonuniformities during the initial AS-...
Saved in:
| Published in: | Computers & chemical engineering Vol. 178; p. 108400 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2023
|
| Subjects: | |
| ISSN: | 0098-1354, 1873-4375 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Novel transistor fabrication methods such as area-selective atomic layer deposition (AS-ALD) are crucial to improving nanopatterning, which is essential for facilitating transistor stacking in semiconducting wafers. However, transistor surfaces are subjected to nonuniformities during the initial AS-ALD adsorption reactions that are attributed to steric hindrance effects. To minimize the role of steric hindrance generated by an oversaturation of reagent on the substrate surface, a discrete feed method is proposed for an ALD reactor configuration where reagent is introduced in short pulses through a perpendicular delivery system. An optimal reactor configuration is developed by modifying the inlet geometries of the reactor to ensure ideal fluid dynamics conditions (e.g., minimal vortices, radial flow distribution) are achieved. Detailed computational fluid dynamics simulations demonstrate the performance of the new reactor configuration and operational strategy.
•Computational fluid dynamics modeling of a discrete feed ALD reactor.•Optimization of reagent delivery system.•Minimization of steric hindrance effects.•Reactor optimal operation is determined. |
|---|---|
| AbstractList | Novel transistor fabrication methods such as area-selective atomic layer deposition (AS-ALD) are crucial to improving nanopatterning, which is essential for facilitating transistor stacking in semiconducting wafers. However, transistor surfaces are subjected to nonuniformities during the initial AS-ALD adsorption reactions that are attributed to steric hindrance effects. To minimize the role of steric hindrance generated by an oversaturation of reagent on the substrate surface, a discrete feed method is proposed for an ALD reactor configuration where reagent is introduced in short pulses through a perpendicular delivery system. An optimal reactor configuration is developed by modifying the inlet geometries of the reactor to ensure ideal fluid dynamics conditions (e.g., minimal vortices, radial flow distribution) are achieved. Detailed computational fluid dynamics simulations demonstrate the performance of the new reactor configuration and operational strategy.
•Computational fluid dynamics modeling of a discrete feed ALD reactor.•Optimization of reagent delivery system.•Minimization of steric hindrance effects.•Reactor optimal operation is determined. |
| ArticleNumber | 108400 |
| Author | Tom, Matthew Yun, Sungil Wang, Henrik Ou, Feiyang Christofides, Panagiotis D. Orkoulas, Gerassimos |
| Author_xml | – sequence: 1 givenname: Matthew orcidid: 0000-0002-7892-7418 surname: Tom fullname: Tom, Matthew organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA – sequence: 2 givenname: Henrik surname: Wang fullname: Wang, Henrik organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA – sequence: 3 givenname: Feiyang orcidid: 0000-0002-1350-3657 surname: Ou fullname: Ou, Feiyang organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA – sequence: 4 givenname: Sungil surname: Yun fullname: Yun, Sungil organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA – sequence: 5 givenname: Gerassimos surname: Orkoulas fullname: Orkoulas, Gerassimos organization: Department of Chemical Engineering, Widener University, Chester, PA 19013, USA – sequence: 6 givenname: Panagiotis D. surname: Christofides fullname: Christofides, Panagiotis D. email: pdc@seas.ucla.edu organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA |
| BookMark | eNqNkMtKBDEQRYMoOD7-IX5Aj0mnOx3diAy-QHCj65CpVMYM3UmTRGE-wP-2x1EQV64Kqu49UOeI7IcYkJAzzuaccXm-nkMcRnjFAcNqXrNaTHvVMLZHZlx1ompE1-6TGWMXquKibQ7JUc5rxljdKDUjH4up_lZM8TGYnrr-zVtqN8EMHjIdosXehxWNjhpqfYaEBalDtNSUOGVobzaYqMUxZr-F0IQGSkyX9Hocew9fZFriz36KZr8K1ARL44jp635CDpzpM55-z2PycnvzvLivHp_uHhbXjxWImpeqdcJZWTvXGdGAkaCUtZ1tzJKBBN6BrJmEthXIG4ntUomaLV3tRCPZ0koljsnFjgsp5pzQ6TH5waSN5kxvfeq1_uVTb33qnc-pe_WnC37nrSTj-38RFjsCTi--e0w6g8cAaH1CKNpG_w_KJ-98n8k |
| CitedBy_id | crossref_primary_10_1016_j_optmat_2024_115440 crossref_primary_10_1093_nsr_nwaf247 crossref_primary_10_1016_j_dche_2024_100140 crossref_primary_10_1016_j_jece_2025_119101 |
| Cites_doi | 10.1021/acsnano.7b04701 10.1063/1.4953034 10.1016/j.vacuum.2015.10.023 10.1016/j.ces.2012.07.015 10.1021/acs.langmuir.1c02216 10.1116/6.0000840 10.1002/aic.690460502 10.1021/acs.chemmater.8b03454 10.1021/acs.chemmater.9b02992 10.1063/1.4942439 10.3390/pr11030686 10.3390/coatings13030558 10.1016/B978-0-443-15274-0.50012-3 10.1016/j.memsci.2020.118610 10.1016/j.ces.2020.115513 10.1021/acs.jpcc.1c10816 10.1016/j.mattod.2014.04.026 10.1021/acs.chemmater.2c00513 10.1109/55.823570 10.1088/0022-3727/30/12/006 10.1016/j.ifacol.2022.09.439 10.23919/VLSIT.2017.7998183 10.1016/j.cherd.2022.09.051 10.1002/cvde.200500024 10.54097/hset.v27i.3779 10.3390/coatings9010005 10.1002/adma.202109796 10.1016/j.cej.2023.144944 10.1007/s10853-015-9303-7 10.1002/adma.202270332 10.1063/1.5095515 10.1080/10408436.2012.736886 10.1021/acs.chemmater.9b04647 10.1149/2.0021506jss 10.1016/j.ijheatmasstransfer.2016.01.034 10.1109/ISQED.2016.7479212 10.1116/6.0002096 10.1063/1.1922076 10.1016/j.ces.2023.119118 10.1149/2.0051506jss 10.1116/1.4913379 10.1021/acsami.5b05262 10.3390/mi14020279 10.1109/JPROC.1998.658762 10.1016/j.compchemeng.2022.107757 10.1039/D3TC00704A 10.1116/1.3670745 10.1116/1.4932564 10.1063/1.1940727 10.1016/j.compchemeng.2022.107861 10.1109/ASMC.2007.375064 10.1021/cr900056b 10.1063/1.4742991 10.1016/j.ces.2021.116447 10.1021/cm100900k |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compchemeng.2023.108400 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| ExternalDocumentID | 10_1016_j_compchemeng_2023_108400 S0098135423002703 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c321t-5f3fd62ff7a34ca6c88dd7d4ab0c6c17c6206c553e146e5b8320bf2f3460bd683 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072416300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-1354 |
| IngestDate | Sat Nov 29 07:28:32 EST 2025 Tue Nov 18 22:31:38 EST 2025 Sat Apr 13 16:39:05 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Computational fluid dynamics modeling Area-selective atomic layer deposition Reactor optimal operation Semiconductor manufacturing processes Reactor optimal design |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-5f3fd62ff7a34ca6c88dd7d4ab0c6c17c6206c553e146e5b8320bf2f3460bd683 |
| ORCID | 0000-0002-1350-3657 0000-0002-7892-7418 |
| ParticipantIDs | crossref_primary_10_1016_j_compchemeng_2023_108400 crossref_citationtrail_10_1016_j_compchemeng_2023_108400 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2023_108400 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kanarik, Lill, Hudson, Sriraman, Tan, Marks, Vahedi, Gottscho (b25) 2015; 33 Chen, Li, Dai, Yang, Wen, Shan, Chen (b10) 2023; 472 Elers, Blomberg, Peussa, Aitchison, Haukka, Marcus (b18) 2006; 12 Merkx, Angelidis, Mameli, Li, Lemaire, Sharma, Hausmann, Kessels, Sandoval, Mackus (b39) 2022; 126 Park, Kim, Jang, Kim, Lee, Lee, Jung, Hwang (b48) 2011; 23 Yun, Tom, Orkoulas, Christofides (b67) 2022; 163 Faraz, Roozeboom, Knoops, Kessels (b19) 2015; 4 Muneshwar, Cadien (b44) 2016; 119 Mohammad, Elomri, Kerbache (b41) 2022; 55 ANSYS (b3) 2022 Puurunen (b53) 2005; 97 Ritala, Leskelä (b55) 2002 Yarbrough, Pieck, Grigjanis, Oh, Maue, Tonner-Zech, Bent (b64) 2022; 34 Yun, Wang, Tom, Ou, Orkoulas, Christofides (b69) 2023; 13 Carver, Plombon, Romero, Suri, Tronic, Jr. (b7) 2015; 4 Yun, Ou, Wang, Tom, Orkoulas, Christofides (b66) 2022; 188 Chandrasekar, Zhang, Mhaskar (b8) 2023; 281 Handwerker (b21) 2021 Johnson, Hultqvist, Bent (b24) 2014; 17 Ponraj, Attolini, Bosi (b50) 2013; 38 Poodt, Cameron, Dickey, George, Kuznetsov, Parsons, Roozeboom, Sundaram, Vermeer (b51) 2012; 30 George (b20) 2010; 110 Mameli, Merkx, Karasulu, Roozeboom, Kessels, Mackus (b36) 2017; 11 Pan, Jen, Yuan (b47) 2016; 96 Andreoni, Yip (b1) 2020 Merkx, Sandoval, Hausmann, Kessels, Mackus (b40) 2020; 32 Wang, Liu, Zhou (b60) 2022; 34 Xiong, Jia, Mi, Wang (b62) 2021; 617 Cao, Cai, Chen (b6) 2020; 32 Deng, He, Duan, Shan, Chen (b16) 2016; 123 Mousa, Oldham, Parsons (b43) 2015; 7 Xu, Haeve, Lemaire, Sharma, Hausmann, Agarwal (b63) 2022; 38 Lee, Cho, Kim (b28) 2017; 2 Mackus, Bol, Kessels (b34) 2014; 6 Petti, Münzenrieder, Vogt, Faber, Büthe, Cantarella, Bottacchi, Anthopoulos, Tröster (b49) 2016; 3 Tom, M., Yun, S., Wang, H., Ou, F., Orkoulas, G., Christofides, P.D., 2023. Multiscale Modeling of Spatial Area-Selective Thermal Atomic Layer Deposition. In: Kokossis, A.C., Georgiadis, M.C., Pistikopoulos, E. (Eds.), Proceedings of 33rd European Symposium on Computer Aided Process Engineering. In: Computer Aided Chemical Engineering, vol. 52, Athens, Greece, pp. 71–76. Lee, Bent (b27) 2011 Mackus, Merkx, Kessels (b35) 2019; 31 Wang, Wang, Xu, Liu, Chen, Chen, Hu, Duan (b61) 2019; 114 Yun, Tom, Ou, Orkoulas, Christofides (b68) 2022; 161 Cong, Li, Cao, Feng, Chen (b12) 2020; 217 De la Huerta, Nguyen, Dedulle, Bellet, Jiménez, Muñoz-Rojas (b14) 2018; 9 Powell, Glasse, Green, French, Stemp (b52) 2000; 21 Kimes, Moore, Maslar (b26) 2012; 83 Meng, Goodrich (b38) 2021 Li, Tezsevin, Merkx, Maas, Kessels, Sandoval, Mackus (b31) 2022; 40 Anitha, Banerjee, Joo (b2) 2015; 50 Swanson (b58) 2023 Siimon, Aarik (b57) 1997; 30 Lee, Lee, Han, Kim, Jeon (b29) 2023; 11 ANSYS (b4) 2022 Lee, F., Marcus, S., Shero, E., Wilk, G., Swerts, J., Maes, J.W., Blomberg, T., Delabie, A., Gros-Jean, M., Deloffre, E., 2007. Atomic Layer Deposition: An Enabling Technology for Microelectronic Device Manufacturing. In: Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference. Stresa, Italy, pp. 359–365. Schram, Sutar, Radu, Asselberghs (b56) 2022; 34 Asenov, A., Wang, Y., Cheng, B., Wang, X., Asenov, P., Al-Ameri, T., Georgiev, V.P., 2016. Nanowire transistor solutions for 5nm and beyond. In: Proceedings of 17th International Symposium on Quality Electronic Design. Santa Clara, CA, USA, pp. 269–274. Deng, He, Duan, Chen, Shan (b15) 2016; 34 Christofides, Armaou, Lou, Varshney (b11) 2009 Holmqvist, Törndahl, Stenström (b22) 2012; 81 Maroudas (b37) 2000; 46 Rashid, Mhaskar (b54) 2023; 11 Yarbrough, Shearer, Bent (b65) 2021; 39 Loubet, N., Hook, T., Montanini, P., Yeung, C.-W., Kanakasabapathy, S., Guillom, M., Yamashita, T., Zhang, J., Miao, X., Wang, J., Young, A., Chao, R., Kang, M., Liu, Z., Fan, S., Hamieh, B., Sieg, S., Mignot, Y., Xu, W., Seo, S.-C., Yoo, J., Mochizuki, S., Sankarapandian, M., Kwon, O., Carr, A., Greene, A., Park, Y., Frougier, J., Galatage, R., Bao, R., Shearer, J., Conti, R., Song, H., Lee, D., Kong, D., Xu, Y., Arceo, A., Bi, Z., Xu, P., Muthinti, R., Li, J., Wong, R., Brown, D., Oldiges, P., Robison, R., Arnold, J., Felix, N., Skordas, S., Gaudiello, J., Standaert, T., Jagannathan, H., Corliss, D., Na, M.-H., Knorr, A., Wu, T., Gupta, D., Lian, S., Divakaruni, R., Gow, T., Labelle, C., Lee, S., Paruchuri, V., Bu, H., Khare, M., 2017. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In: Proceedings of Symposium on VLSI Technology. Kyoto, Japan, pp. T230–T231. Dziczek (b17) 2022 Dahmen (b13) 2003 Lin, Wang, Tien, Tung, Wang, Lai (b32) 2023; 14 Huang (b23) 2022; 27 Pan (b46) 2021; 234 Moore (b42) 1998; 86 Chen, Kim, McIntyre, Porter, Bent (b9) 2005; 86 Muñoz-Rojas, Nguyen, De la Huerta, Jiménez, Bellet (b45) 2019 Xu (10.1016/j.compchemeng.2023.108400_b63) 2022; 38 Maroudas (10.1016/j.compchemeng.2023.108400_b37) 2000; 46 Kanarik (10.1016/j.compchemeng.2023.108400_b25) 2015; 33 Yun (10.1016/j.compchemeng.2023.108400_b68) 2022; 161 10.1016/j.compchemeng.2023.108400_b30 Yun (10.1016/j.compchemeng.2023.108400_b69) 2023; 13 Rashid (10.1016/j.compchemeng.2023.108400_b54) 2023; 11 Mackus (10.1016/j.compchemeng.2023.108400_b35) 2019; 31 Siimon (10.1016/j.compchemeng.2023.108400_b57) 1997; 30 Wang (10.1016/j.compchemeng.2023.108400_b61) 2019; 114 Lee (10.1016/j.compchemeng.2023.108400_b29) 2023; 11 Chandrasekar (10.1016/j.compchemeng.2023.108400_b8) 2023; 281 Cao (10.1016/j.compchemeng.2023.108400_b6) 2020; 32 Dziczek (10.1016/j.compchemeng.2023.108400_b17) 2022 Wang (10.1016/j.compchemeng.2023.108400_b60) 2022; 34 De la Huerta (10.1016/j.compchemeng.2023.108400_b14) 2018; 9 ANSYS (10.1016/j.compchemeng.2023.108400_b3) 2022 George (10.1016/j.compchemeng.2023.108400_b20) 2010; 110 Cong (10.1016/j.compchemeng.2023.108400_b12) 2020; 217 Handwerker (10.1016/j.compchemeng.2023.108400_b21) 2021 Faraz (10.1016/j.compchemeng.2023.108400_b19) 2015; 4 Holmqvist (10.1016/j.compchemeng.2023.108400_b22) 2012; 81 Xiong (10.1016/j.compchemeng.2023.108400_b62) 2021; 617 Deng (10.1016/j.compchemeng.2023.108400_b15) 2016; 34 Muñoz-Rojas (10.1016/j.compchemeng.2023.108400_b45) 2019 Puurunen (10.1016/j.compchemeng.2023.108400_b53) 2005; 97 ANSYS (10.1016/j.compchemeng.2023.108400_b4) 2022 Pan (10.1016/j.compchemeng.2023.108400_b46) 2021; 234 Moore (10.1016/j.compchemeng.2023.108400_b42) 1998; 86 Dahmen (10.1016/j.compchemeng.2023.108400_b13) 2003 Poodt (10.1016/j.compchemeng.2023.108400_b51) 2012; 30 Yun (10.1016/j.compchemeng.2023.108400_b67) 2022; 163 Chen (10.1016/j.compchemeng.2023.108400_b10) 2023; 472 Elers (10.1016/j.compchemeng.2023.108400_b18) 2006; 12 10.1016/j.compchemeng.2023.108400_b33 Schram (10.1016/j.compchemeng.2023.108400_b56) 2022; 34 Lee (10.1016/j.compchemeng.2023.108400_b28) 2017; 2 Carver (10.1016/j.compchemeng.2023.108400_b7) 2015; 4 Meng (10.1016/j.compchemeng.2023.108400_b38) 2021 Mackus (10.1016/j.compchemeng.2023.108400_b34) 2014; 6 Mousa (10.1016/j.compchemeng.2023.108400_b43) 2015; 7 Li (10.1016/j.compchemeng.2023.108400_b31) 2022; 40 Ponraj (10.1016/j.compchemeng.2023.108400_b50) 2013; 38 Mohammad (10.1016/j.compchemeng.2023.108400_b41) 2022; 55 Christofides (10.1016/j.compchemeng.2023.108400_b11) 2009 10.1016/j.compchemeng.2023.108400_b5 Merkx (10.1016/j.compchemeng.2023.108400_b40) 2020; 32 Mameli (10.1016/j.compchemeng.2023.108400_b36) 2017; 11 Yarbrough (10.1016/j.compchemeng.2023.108400_b65) 2021; 39 Park (10.1016/j.compchemeng.2023.108400_b48) 2011; 23 Pan (10.1016/j.compchemeng.2023.108400_b47) 2016; 96 Powell (10.1016/j.compchemeng.2023.108400_b52) 2000; 21 Yarbrough (10.1016/j.compchemeng.2023.108400_b64) 2022; 34 Petti (10.1016/j.compchemeng.2023.108400_b49) 2016; 3 Huang (10.1016/j.compchemeng.2023.108400_b23) 2022; 27 Chen (10.1016/j.compchemeng.2023.108400_b9) 2005; 86 Andreoni (10.1016/j.compchemeng.2023.108400_b1) 2020 10.1016/j.compchemeng.2023.108400_b59 Kimes (10.1016/j.compchemeng.2023.108400_b26) 2012; 83 Deng (10.1016/j.compchemeng.2023.108400_b16) 2016; 123 Lin (10.1016/j.compchemeng.2023.108400_b32) 2023; 14 Yun (10.1016/j.compchemeng.2023.108400_b66) 2022; 188 Johnson (10.1016/j.compchemeng.2023.108400_b24) 2014; 17 Anitha (10.1016/j.compchemeng.2023.108400_b2) 2015; 50 Lee (10.1016/j.compchemeng.2023.108400_b27) 2011 Muneshwar (10.1016/j.compchemeng.2023.108400_b44) 2016; 119 Merkx (10.1016/j.compchemeng.2023.108400_b39) 2022; 126 Ritala (10.1016/j.compchemeng.2023.108400_b55) 2002 Swanson (10.1016/j.compchemeng.2023.108400_b58) 2023 |
| References_xml | – volume: 11 start-page: 686 year: 2023 ident: b54 article-title: Are neural networks the right tool for process modeling and control of batch and batch-like processes? publication-title: Processes – volume: 472 year: 2023 ident: b10 article-title: Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures publication-title: Chem. Eng. J. – reference: Asenov, A., Wang, Y., Cheng, B., Wang, X., Asenov, P., Al-Ameri, T., Georgiev, V.P., 2016. Nanowire transistor solutions for 5nm and beyond. In: Proceedings of 17th International Symposium on Quality Electronic Design. Santa Clara, CA, USA, pp. 269–274. – volume: 4 start-page: N5005 year: 2015 ident: b7 article-title: Atomic layer etching: An industry perspective publication-title: ECS J. Solid State Sci. Technol. – volume: 14 year: 2023 ident: b32 article-title: Fabrication of aluminum oxide thin-film devices based on atomic layer deposition and pulsed discrete feed method publication-title: Micromachines – volume: 13 start-page: 558 year: 2023 ident: b69 article-title: Multiscale CFD modeling of area-selective atomic layer deposition: Application to reactor design and operating condition calculation publication-title: Coatings – year: 2020 ident: b1 article-title: Handbook of Materials Modeling: Methods: Theory and Modeling – volume: 55 start-page: 476 year: 2022 end-page: 483 ident: b41 article-title: The global semiconductor chip shortage: Causes, implications, and potential remedies publication-title: IFAC-PapersOnLine – volume: 34 year: 2022 ident: b60 article-title: The road for 2D semiconductors in the silicon age publication-title: Adv. Mater. – volume: 30 start-page: 1725 year: 1997 end-page: 1728 ident: b57 article-title: Thickness profiles of thin films caused by secondary reactions in flow-type atomic layer deposition reactors publication-title: J. Phys. D: Appl. Phys. – volume: 234 year: 2021 ident: b46 article-title: Density functional theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition publication-title: Chem. Eng. Sci. – volume: 23 start-page: 1654 year: 2011 end-page: 1658 ident: b48 article-title: Improved growth and electrical properties of atomic-layer-deposited metal-oxide film by discrete feeding method of metal precursor publication-title: Chem. Mater. – start-page: 103 year: 2002 end-page: 159 ident: b55 article-title: Chapter 2 - Atomic layer deposition publication-title: Handbook of Thin Films – volume: 4 start-page: N5023 year: 2015 end-page: N5032 ident: b19 article-title: Atomic layer etching: What can we learn from atomic layer deposition? publication-title: ECS J. Solid State Sci. Technol. – volume: 83 year: 2012 ident: b26 article-title: Perpendicular-flow, single-wafer atomic layer deposition reactor chamber design for use with in situ diagnostics publication-title: Rev. Sci. Instrum. – volume: 11 start-page: 6894 year: 2023 end-page: 6901 ident: b29 article-title: Enhancing chemisorption efficiency and thin-film characteristics via a discrete feeding method in high-k dielectric atomic layer deposition for preventing interfacial layer formation publication-title: J. Mater. Chem. C – volume: 119 year: 2016 ident: b44 article-title: A publication-title: J. Appl. Phys. – volume: 12 start-page: 13 year: 2006 end-page: 24 ident: b18 article-title: Film uniformity in atomic layer deposition publication-title: Chem. Vapor Depos. – volume: 617 year: 2021 ident: b62 article-title: Upgrading polytetrafluoroethylene hollow-fiber membranes by CFD-optimized atomic layer deposition publication-title: J. Membr. Sci. – volume: 30 year: 2012 ident: b51 article-title: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition publication-title: J. Vac. Sci. Technol. A – volume: 217 year: 2020 ident: b12 article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method publication-title: Chem. Eng. Sci. – start-page: 1 year: 2022 end-page: 7 ident: b17 article-title: Why the automotive chip crisis isn’t over (yet) publication-title: Chicago Fed Letter. – volume: 34 start-page: 4646 year: 2022 end-page: 4659 ident: b64 article-title: Tuning molecular inhibitors and aluminum precursors for the area-selective atomic layer deposition of Al publication-title: Chem. Mater. – volume: 3 year: 2016 ident: b49 article-title: Metal oxide semiconductor thin-film transistors for flexible electronics publication-title: Appl. Phys. Rev. – volume: 2 start-page: 37 year: 2017 end-page: 46 ident: b28 article-title: Is there a better semiconductor firm in Taiwan? publication-title: Manage. Econ. Rev. – start-page: 787 year: 2003 end-page: 808 ident: b13 article-title: Chemical vapor deposition publication-title: Encyclopedia of Physical Science and Technology – volume: 50 start-page: 7495 year: 2015 end-page: 7536 ident: b2 article-title: Recent developments in TiO publication-title: J. Mater. Sci. – volume: 38 start-page: 203 year: 2013 end-page: 233 ident: b50 article-title: Review on atomic layer deposition and applications of oxide thin films publication-title: Crit. Rev. Solid State Mater. Sci. – volume: 9 start-page: 5 year: 2018 ident: b14 article-title: Influence of the geometric parameters on the deposition mode in spatial atomic layer deposition: A novel approach to area-selective deposition publication-title: Coatings – volume: 33 year: 2015 ident: b25 article-title: Overview of atomic layer etching in the semiconductor industry publication-title: J. Vac. Sci. Technol. A – volume: 163 year: 2022 ident: b67 article-title: Multiscale computational fluid dynamics modeling of spatial thermal atomic layer etching publication-title: Comput. Chem. Eng. – volume: 34 start-page: 01A108 year: 2016 ident: b15 article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition publication-title: J. Vac. Sci. Technol. A – reference: Lee, F., Marcus, S., Shero, E., Wilk, G., Swerts, J., Maes, J.W., Blomberg, T., Delabie, A., Gros-Jean, M., Deloffre, E., 2007. Atomic Layer Deposition: An Enabling Technology for Microelectronic Device Manufacturing. In: Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference. Stresa, Italy, pp. 359–365. – year: 2009 ident: b11 article-title: Control and Optimization of Multiscale Process Systems – volume: 46 start-page: 878 year: 2000 end-page: 882 ident: b37 article-title: Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering publication-title: AIChE J. – volume: 123 start-page: 103 year: 2016 end-page: 110 ident: b16 article-title: Atomic layer deposition process optimization by computational fluid dynamics publication-title: Vacuum – volume: 110 start-page: 111 year: 2010 end-page: 131 ident: b20 article-title: Atomic layer deposition: An overview publication-title: Chem. Rev. – volume: 86 year: 2005 ident: b9 article-title: Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification publication-title: Appl. Phys. Lett. – reference: Tom, M., Yun, S., Wang, H., Ou, F., Orkoulas, G., Christofides, P.D., 2023. Multiscale Modeling of Spatial Area-Selective Thermal Atomic Layer Deposition. In: Kokossis, A.C., Georgiadis, M.C., Pistikopoulos, E. (Eds.), Proceedings of 33rd European Symposium on Computer Aided Process Engineering. In: Computer Aided Chemical Engineering, vol. 52, Athens, Greece, pp. 71–76. – start-page: 1 year: 2019 end-page: 25 ident: b45 article-title: Spatial atomic layer deposition publication-title: Chemical Vapor Deposition for Nanotechnology – volume: 281 year: 2023 ident: b8 article-title: A hybrid hubspace-RNN based approach for modelling of non-linear batch processes publication-title: Chem. Eng. Sci. – start-page: 193 year: 2011 end-page: 225 ident: b27 article-title: Nanopatterning by area-selective atomic layer deposition publication-title: Atomic Layer Deposition of Nanostructured Materials – volume: 38 start-page: 652 year: 2022 end-page: 660 ident: b63 article-title: Functionalization of the SiO publication-title: Langmuir – reference: Loubet, N., Hook, T., Montanini, P., Yeung, C.-W., Kanakasabapathy, S., Guillom, M., Yamashita, T., Zhang, J., Miao, X., Wang, J., Young, A., Chao, R., Kang, M., Liu, Z., Fan, S., Hamieh, B., Sieg, S., Mignot, Y., Xu, W., Seo, S.-C., Yoo, J., Mochizuki, S., Sankarapandian, M., Kwon, O., Carr, A., Greene, A., Park, Y., Frougier, J., Galatage, R., Bao, R., Shearer, J., Conti, R., Song, H., Lee, D., Kong, D., Xu, Y., Arceo, A., Bi, Z., Xu, P., Muthinti, R., Li, J., Wong, R., Brown, D., Oldiges, P., Robison, R., Arnold, J., Felix, N., Skordas, S., Gaudiello, J., Standaert, T., Jagannathan, H., Corliss, D., Na, M.-H., Knorr, A., Wu, T., Gupta, D., Lian, S., Divakaruni, R., Gow, T., Labelle, C., Lee, S., Paruchuri, V., Bu, H., Khare, M., 2017. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In: Proceedings of Symposium on VLSI Technology. Kyoto, Japan, pp. T230–T231. – volume: 96 start-page: 189 year: 2016 end-page: 198 ident: b47 article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al publication-title: Int. J. Heat Mass Transfer – volume: 188 start-page: 271 year: 2022 end-page: 286 ident: b66 article-title: Atomistic-mesoscopic modeling of area-selective thermal atomic layer deposition publication-title: Chem. Eng. Res. Des. – year: 2021 ident: b21 article-title: A global semiconductor shortage highlights a troubling trend: A small and shrinking number of the world’s computer chips are made in the US publication-title: Conversation – volume: 32 start-page: 2195 year: 2020 end-page: 2207 ident: b6 article-title: Inherently selective atomic layer deposition and applications publication-title: Chem. Mater. – volume: 31 start-page: 2 year: 2019 end-page: 12 ident: b35 article-title: From the bottom-up: Toward area-selective atomic layer deposition with high selectivity publication-title: Chem. Mater. – volume: 11 start-page: 9303 year: 2017 end-page: 9311 ident: b36 article-title: Area-selective atomic layer deposition of SiO publication-title: ACS Nano – volume: 126 start-page: 4845 year: 2022 end-page: 4853 ident: b39 article-title: Relation between reactive surface sites and precursor choice for area-selective atomic layer deposition using small molecule inhibitors publication-title: J. Phys. Chem. C – volume: 7 start-page: 19523 year: 2015 end-page: 19529 ident: b43 article-title: Precise nanoscale surface modification and coating of macroscale objects: Open-environment in loco atomic layer deposition on an automobile publication-title: ACS Appl. Mater. Interfaces – year: 2022 ident: b3 article-title: Ansys Fluent Theory Guide – volume: 27 start-page: 361 year: 2022 end-page: 367 ident: b23 article-title: Research progresses on suppressing the short-channel effects of field-effect transistor publication-title: Highlights Sci. Eng. Technol. – volume: 21 start-page: 104 year: 2000 end-page: 106 ident: b52 article-title: An amorphous silicon thin-film transistor with fully self-aligned top gate structure publication-title: IEEE Electron Device Lett. – year: 2023 ident: b58 article-title: The CHIPS act is about more than chips: Here’s what’s in it publication-title: N. Y. Times – volume: 114 year: 2019 ident: b61 article-title: Multiple short pulse process for low-temperature atomic layer deposition and its transient steric hindrance publication-title: Appl. Phys. Lett. – volume: 17 start-page: 236 year: 2014 end-page: 246 ident: b24 article-title: A brief review of atomic layer deposition: from fundamentals to applications publication-title: Mater. Today – volume: 161 year: 2022 ident: b68 article-title: Multiscale computational fluid dynamics modeling of thermal atomic layer etching: Application to chamber configuration design publication-title: Comput. Chem. Eng. – year: 2021 ident: b38 article-title: Global governments ramp up pace of chip investments publication-title: Semicond. Ind. Assoc. – volume: 40 year: 2022 ident: b31 article-title: Packing of inhibitor molecules during area-selective atomic layer deposition studied using random sequential adsorption simulations publication-title: J. Vac. Sci. Technol. A – volume: 81 start-page: 260 year: 2012 end-page: 272 ident: b22 article-title: A model-based methodology for the analysis and design of atomic layer deposition processes-Part I: Mechanistic modelling of continuous flow reactors publication-title: Chem. Eng. Sci. – volume: 86 start-page: 82 year: 1998 end-page: 85 ident: b42 article-title: Cramming more components onto integrated circuits publication-title: Proc. IEEE – volume: 32 start-page: 3335 year: 2020 end-page: 3345 ident: b40 article-title: Mechanism of precursor blocking by acetylacetone inhibitor molecules during area-selective atomic layer deposition of SiO publication-title: Chem. Mater. – volume: 97 year: 2005 ident: b53 article-title: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process publication-title: J. Appl. Phys. – volume: 34 year: 2022 ident: b56 article-title: Challenges of wafer-scale integration of 2D semiconductors for high-performance transistor circuits publication-title: Adv. Mater. – year: 2022 ident: b4 article-title: Ansys Fluent User’s Guide – volume: 6 start-page: 10941 year: 2014 end-page: 10960 ident: b34 article-title: The use of atomic layer deposition in advanced nanopatterning publication-title: IEEE Electron Device Lett. – volume: 39 year: 2021 ident: b65 article-title: Next generation nanopatterning using small molecule inhibitors for area-selective atomic layer deposition publication-title: J. Vac. Sci. Technol. A – volume: 11 start-page: 9303 year: 2017 ident: 10.1016/j.compchemeng.2023.108400_b36 article-title: Area-selective atomic layer deposition of SiO2 using acetylacetone as a chemoselective inhibitor in an ABC-type cycle publication-title: ACS Nano doi: 10.1021/acsnano.7b04701 – volume: 3 year: 2016 ident: 10.1016/j.compchemeng.2023.108400_b49 article-title: Metal oxide semiconductor thin-film transistors for flexible electronics publication-title: Appl. Phys. Rev. doi: 10.1063/1.4953034 – volume: 123 start-page: 103 year: 2016 ident: 10.1016/j.compchemeng.2023.108400_b16 article-title: Atomic layer deposition process optimization by computational fluid dynamics publication-title: Vacuum doi: 10.1016/j.vacuum.2015.10.023 – start-page: 103 year: 2002 ident: 10.1016/j.compchemeng.2023.108400_b55 article-title: Chapter 2 - Atomic layer deposition – volume: 81 start-page: 260 year: 2012 ident: 10.1016/j.compchemeng.2023.108400_b22 article-title: A model-based methodology for the analysis and design of atomic layer deposition processes-Part I: Mechanistic modelling of continuous flow reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.07.015 – start-page: 787 year: 2003 ident: 10.1016/j.compchemeng.2023.108400_b13 article-title: Chemical vapor deposition – volume: 38 start-page: 652 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b63 article-title: Functionalization of the SiO2 surface with aminosilanes to enable area-selective atomic layer deposition of Al2O3 publication-title: Langmuir doi: 10.1021/acs.langmuir.1c02216 – volume: 39 year: 2021 ident: 10.1016/j.compchemeng.2023.108400_b65 article-title: Next generation nanopatterning using small molecule inhibitors for area-selective atomic layer deposition publication-title: J. Vac. Sci. Technol. A doi: 10.1116/6.0000840 – start-page: 1 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b17 article-title: Why the automotive chip crisis isn’t over (yet) publication-title: Chicago Fed Letter. – volume: 46 start-page: 878 year: 2000 ident: 10.1016/j.compchemeng.2023.108400_b37 article-title: Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering publication-title: AIChE J. doi: 10.1002/aic.690460502 – volume: 31 start-page: 2 year: 2019 ident: 10.1016/j.compchemeng.2023.108400_b35 article-title: From the bottom-up: Toward area-selective atomic layer deposition with high selectivity publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03454 – volume: 32 start-page: 3335 year: 2020 ident: 10.1016/j.compchemeng.2023.108400_b40 article-title: Mechanism of precursor blocking by acetylacetone inhibitor molecules during area-selective atomic layer deposition of SiO2 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02992 – volume: 119 year: 2016 ident: 10.1016/j.compchemeng.2023.108400_b44 article-title: AxBAxB... pulsed atomic layer deposition: Numerical growth model and experiments publication-title: J. Appl. Phys. doi: 10.1063/1.4942439 – year: 2021 ident: 10.1016/j.compchemeng.2023.108400_b21 article-title: A global semiconductor shortage highlights a troubling trend: A small and shrinking number of the world’s computer chips are made in the US publication-title: Conversation – volume: 11 start-page: 686 year: 2023 ident: 10.1016/j.compchemeng.2023.108400_b54 article-title: Are neural networks the right tool for process modeling and control of batch and batch-like processes? publication-title: Processes doi: 10.3390/pr11030686 – volume: 13 start-page: 558 year: 2023 ident: 10.1016/j.compchemeng.2023.108400_b69 article-title: Multiscale CFD modeling of area-selective atomic layer deposition: Application to reactor design and operating condition calculation publication-title: Coatings doi: 10.3390/coatings13030558 – start-page: 193 year: 2011 ident: 10.1016/j.compchemeng.2023.108400_b27 article-title: Nanopatterning by area-selective atomic layer deposition – ident: 10.1016/j.compchemeng.2023.108400_b59 doi: 10.1016/B978-0-443-15274-0.50012-3 – volume: 617 year: 2021 ident: 10.1016/j.compchemeng.2023.108400_b62 article-title: Upgrading polytetrafluoroethylene hollow-fiber membranes by CFD-optimized atomic layer deposition publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118610 – volume: 217 year: 2020 ident: 10.1016/j.compchemeng.2023.108400_b12 article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115513 – volume: 126 start-page: 4845 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b39 article-title: Relation between reactive surface sites and precursor choice for area-selective atomic layer deposition using small molecule inhibitors publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c10816 – volume: 17 start-page: 236 year: 2014 ident: 10.1016/j.compchemeng.2023.108400_b24 article-title: A brief review of atomic layer deposition: from fundamentals to applications publication-title: Mater. Today doi: 10.1016/j.mattod.2014.04.026 – volume: 34 start-page: 4646 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b64 article-title: Tuning molecular inhibitors and aluminum precursors for the area-selective atomic layer deposition of Al2O3 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c00513 – volume: 21 start-page: 104 year: 2000 ident: 10.1016/j.compchemeng.2023.108400_b52 article-title: An amorphous silicon thin-film transistor with fully self-aligned top gate structure publication-title: IEEE Electron Device Lett. doi: 10.1109/55.823570 – volume: 30 start-page: 1725 year: 1997 ident: 10.1016/j.compchemeng.2023.108400_b57 article-title: Thickness profiles of thin films caused by secondary reactions in flow-type atomic layer deposition reactors publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/30/12/006 – volume: 55 start-page: 476 issue: 10 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b41 article-title: The global semiconductor chip shortage: Causes, implications, and potential remedies publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.09.439 – year: 2021 ident: 10.1016/j.compchemeng.2023.108400_b38 article-title: Global governments ramp up pace of chip investments publication-title: Semicond. Ind. Assoc. – ident: 10.1016/j.compchemeng.2023.108400_b33 doi: 10.23919/VLSIT.2017.7998183 – volume: 188 start-page: 271 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b66 article-title: Atomistic-mesoscopic modeling of area-selective thermal atomic layer deposition publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.09.051 – volume: 12 start-page: 13 year: 2006 ident: 10.1016/j.compchemeng.2023.108400_b18 article-title: Film uniformity in atomic layer deposition publication-title: Chem. Vapor Depos. doi: 10.1002/cvde.200500024 – volume: 27 start-page: 361 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b23 article-title: Research progresses on suppressing the short-channel effects of field-effect transistor publication-title: Highlights Sci. Eng. Technol. doi: 10.54097/hset.v27i.3779 – year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b4 – volume: 9 start-page: 5 year: 2018 ident: 10.1016/j.compchemeng.2023.108400_b14 article-title: Influence of the geometric parameters on the deposition mode in spatial atomic layer deposition: A novel approach to area-selective deposition publication-title: Coatings doi: 10.3390/coatings9010005 – volume: 34 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b56 article-title: Challenges of wafer-scale integration of 2D semiconductors for high-performance transistor circuits publication-title: Adv. Mater. doi: 10.1002/adma.202109796 – volume: 472 year: 2023 ident: 10.1016/j.compchemeng.2023.108400_b10 article-title: Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144944 – volume: 50 start-page: 7495 year: 2015 ident: 10.1016/j.compchemeng.2023.108400_b2 article-title: Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9303-7 – volume: 34 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b60 article-title: The road for 2D semiconductors in the silicon age publication-title: Adv. Mater. doi: 10.1002/adma.202270332 – volume: 114 year: 2019 ident: 10.1016/j.compchemeng.2023.108400_b61 article-title: Multiple short pulse process for low-temperature atomic layer deposition and its transient steric hindrance publication-title: Appl. Phys. Lett. doi: 10.1063/1.5095515 – volume: 38 start-page: 203 year: 2013 ident: 10.1016/j.compchemeng.2023.108400_b50 article-title: Review on atomic layer deposition and applications of oxide thin films publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408436.2012.736886 – volume: 32 start-page: 2195 year: 2020 ident: 10.1016/j.compchemeng.2023.108400_b6 article-title: Inherently selective atomic layer deposition and applications publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04647 – volume: 6 start-page: 10941 year: 2014 ident: 10.1016/j.compchemeng.2023.108400_b34 article-title: The use of atomic layer deposition in advanced nanopatterning publication-title: IEEE Electron Device Lett. – year: 2020 ident: 10.1016/j.compchemeng.2023.108400_b1 – volume: 4 start-page: N5005 year: 2015 ident: 10.1016/j.compchemeng.2023.108400_b7 article-title: Atomic layer etching: An industry perspective publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0021506jss – volume: 96 start-page: 189 year: 2016 ident: 10.1016/j.compchemeng.2023.108400_b47 article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al2O3 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.01.034 – ident: 10.1016/j.compchemeng.2023.108400_b5 doi: 10.1109/ISQED.2016.7479212 – volume: 40 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b31 article-title: Packing of inhibitor molecules during area-selective atomic layer deposition studied using random sequential adsorption simulations publication-title: J. Vac. Sci. Technol. A doi: 10.1116/6.0002096 – volume: 86 year: 2005 ident: 10.1016/j.compchemeng.2023.108400_b9 article-title: Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification publication-title: Appl. Phys. Lett. doi: 10.1063/1.1922076 – volume: 281 year: 2023 ident: 10.1016/j.compchemeng.2023.108400_b8 article-title: A hybrid hubspace-RNN based approach for modelling of non-linear batch processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.119118 – volume: 4 start-page: N5023 year: 2015 ident: 10.1016/j.compchemeng.2023.108400_b19 article-title: Atomic layer etching: What can we learn from atomic layer deposition? publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0051506jss – year: 2023 ident: 10.1016/j.compchemeng.2023.108400_b58 article-title: The CHIPS act is about more than chips: Here’s what’s in it publication-title: N. Y. Times – volume: 33 year: 2015 ident: 10.1016/j.compchemeng.2023.108400_b25 article-title: Overview of atomic layer etching in the semiconductor industry publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4913379 – volume: 7 start-page: 19523 year: 2015 ident: 10.1016/j.compchemeng.2023.108400_b43 article-title: Precise nanoscale surface modification and coating of macroscale objects: Open-environment in loco atomic layer deposition on an automobile publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05262 – volume: 14 year: 2023 ident: 10.1016/j.compchemeng.2023.108400_b32 article-title: Fabrication of aluminum oxide thin-film devices based on atomic layer deposition and pulsed discrete feed method publication-title: Micromachines doi: 10.3390/mi14020279 – volume: 86 start-page: 82 year: 1998 ident: 10.1016/j.compchemeng.2023.108400_b42 article-title: Cramming more components onto integrated circuits publication-title: Proc. IEEE doi: 10.1109/JPROC.1998.658762 – volume: 161 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b68 article-title: Multiscale computational fluid dynamics modeling of thermal atomic layer etching: Application to chamber configuration design publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107757 – volume: 2 start-page: 37 year: 2017 ident: 10.1016/j.compchemeng.2023.108400_b28 article-title: Is there a better semiconductor firm in Taiwan? publication-title: Manage. Econ. Rev. – volume: 11 start-page: 6894 year: 2023 ident: 10.1016/j.compchemeng.2023.108400_b29 article-title: Enhancing chemisorption efficiency and thin-film characteristics via a discrete feeding method in high-k dielectric atomic layer deposition for preventing interfacial layer formation publication-title: J. Mater. Chem. C doi: 10.1039/D3TC00704A – volume: 30 year: 2012 ident: 10.1016/j.compchemeng.2023.108400_b51 article-title: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.3670745 – volume: 34 start-page: 01A108 year: 2016 ident: 10.1016/j.compchemeng.2023.108400_b15 article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4932564 – year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b3 – volume: 97 year: 2005 ident: 10.1016/j.compchemeng.2023.108400_b53 article-title: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process publication-title: J. Appl. Phys. doi: 10.1063/1.1940727 – year: 2009 ident: 10.1016/j.compchemeng.2023.108400_b11 – volume: 163 year: 2022 ident: 10.1016/j.compchemeng.2023.108400_b67 article-title: Multiscale computational fluid dynamics modeling of spatial thermal atomic layer etching publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107861 – ident: 10.1016/j.compchemeng.2023.108400_b30 doi: 10.1109/ASMC.2007.375064 – volume: 110 start-page: 111 year: 2010 ident: 10.1016/j.compchemeng.2023.108400_b20 article-title: Atomic layer deposition: An overview publication-title: Chem. Rev. doi: 10.1021/cr900056b – volume: 83 year: 2012 ident: 10.1016/j.compchemeng.2023.108400_b26 article-title: Perpendicular-flow, single-wafer atomic layer deposition reactor chamber design for use with in situ diagnostics publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4742991 – volume: 234 year: 2021 ident: 10.1016/j.compchemeng.2023.108400_b46 article-title: Density functional theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116447 – start-page: 1 year: 2019 ident: 10.1016/j.compchemeng.2023.108400_b45 article-title: Spatial atomic layer deposition – volume: 23 start-page: 1654 year: 2011 ident: 10.1016/j.compchemeng.2023.108400_b48 article-title: Improved growth and electrical properties of atomic-layer-deposited metal-oxide film by discrete feeding method of metal precursor publication-title: Chem. Mater. doi: 10.1021/cm100900k |
| SSID | ssj0002488 |
| Score | 2.4351492 |
| Snippet | Novel transistor fabrication methods such as area-selective atomic layer deposition (AS-ALD) are crucial to improving nanopatterning, which is essential for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108400 |
| SubjectTerms | Area-selective atomic layer deposition Computational fluid dynamics modeling Reactor optimal design Reactor optimal operation Semiconductor manufacturing processes |
| Title | Computational fluid dynamics modeling of a discrete feed atomic layer deposition reactor: Application to reactor design and operation |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2023.108400 |
| Volume | 178 |
| WOSCitedRecordID | wos001072416300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIEXJ dateStart: 19950611 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZOkb3MHYr625osLfgYsu2LJe-lNGxjdHtoYPsyci6QEJwQuaU9gf0J_X_9ciSLHd0tBvsxQQ5OrZyvuhcdC4IveeUl7GiKiICbJNMMRrVZSEiKaRgVNagxHYl878Wx8dsOi2_j0aXPhfmdFE0DTs7K1f_ldUwBsw2qbN_we6eKAzAZ2A6XIHtcL0T422fBu_j04vNTE6k7TvvGt-4QGduTmdAaWzVRIMMm4D5bQLlF_y86xruw7kmoFZ2nn3jQgzH3UZpdXfgyyYMpDuHWK7UOjB7PnwlkypsgCZ8jQIVaiEGZ7d10dou5MHbb3ckk1Ex61OLvm06zVvNznkg8HNjHbqwh7ngEefSICE4rt-mSzBtU1tdut-mbasft9EmMVim8Y0ywLoj5oaFK7MiWMyeecpemHO97vZv8rCPUvQBcPNqQKoypCpL6h7aIkVesjHaOvx8NP3SqwAkY8wXazXreIDehcDCP7zXzYrRQNk5eYweOSsFH1p0PUEj1TxFDwe1K5-hi2s4wx3OsMcZ9jjDS4059jjDBmfY4gx3OMMBZ9ihaR8PUIbbpR_HFmUYUIZ7lD1HPz4enXz4FLmeHpFISdJGuU61pETrgqeZ4FQwJmUhM17HgoqkEJTEVOR5qkCEq7wGgRPXmug0o3EtKUt30LhZNuoFwjmLuZJEFAlY1UmW1DlTia6pSos0yaXaRcz_oJVwBe9N35VFdStjdxHpp65s1Ze7TDrwXKuc-mrV0gqQefv0l__yzFdoO_yBXqNxu96oN-i-OG1nv9ZvHSyvABddybY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+fluid+dynamics+modeling+of+a+discrete+feed+atomic+layer+deposition+reactor%3A+Application+to+reactor+design+and+operation&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Tom%2C+Matthew&rft.au=Wang%2C+Henrik&rft.au=Ou%2C+Feiyang&rft.au=Yun%2C+Sungil&rft.date=2023-10-01&rft.issn=0098-1354&rft.volume=178&rft.spage=108400&rft_id=info:doi/10.1016%2Fj.compchemeng.2023.108400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2023_108400 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |