A fast algorithm for non-negativity model selection

An efficient optimization algorithm for identifying the best least squares regression model under the condition of non-negative coefficients is proposed. The algorithm exposits an innovative solution via the unrestricted least squares and is based on the regression tree and branch-and-bound techniqu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics and computing Ročník 23; číslo 3; s. 403 - 411
Hlavní autoři: Gatu, Cristian, Kontoghiorghes, Erricos John
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.05.2013
Témata:
ISSN:0960-3174, 1573-1375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An efficient optimization algorithm for identifying the best least squares regression model under the condition of non-negative coefficients is proposed. The algorithm exposits an innovative solution via the unrestricted least squares and is based on the regression tree and branch-and-bound techniques for computing the best subset regression. The aim is to filling a gap in computationally tractable solutions to the non-negative least squares problem and model selection. The proposed method is illustrated with a real dataset. Experimental results on real and artificial random datasets confirm the computational efficacy of the new strategy and demonstrates its ability to solve large model selection problems that are subject to non-negativity constrains.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-012-9318-8