Using the digamma function for basis functions in mesh-free computational methods
We examine the utility of a new family of basis functions for use with the Complex Variable Boundary Element Method (CVBEM) and other mesh-free numerical methods for solving partial differential equations. The family of polygamma functions have found use in mathematics since as early as 1730 when Ja...
Uloženo v:
| Vydáno v: | Engineering analysis with boundary elements Ročník 131; s. 218 - 227 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.10.2021
|
| Témata: | |
| ISSN: | 0955-7997, 1873-197X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We examine the utility of a new family of basis functions for use with the Complex Variable Boundary Element Method (CVBEM) and other mesh-free numerical methods for solving partial differential equations. The family of polygamma functions have found use in mathematics since as early as 1730 when James Stirling related the digamma function to the factorial function [1]. Now, we propose using the digamma function, as well as new variants of the digamma function, as basis functions for the CVBEM. This paper discusses technical aspects associated with using the digamma function as a CVBEM basis function. Then, we demonstrate the utility of the proposed basis function by applying it to a mixed boundary value problem of the Laplace type. |
|---|---|
| ISSN: | 0955-7997 1873-197X |
| DOI: | 10.1016/j.enganabound.2021.06.004 |