Numerical Integration of Lie-Poisson Systems while Preserving Coadjoint Orbits and Energy

In this paper we apply geometric integrators of the RKMK type to the problem of integrating Lie-Poisson systems numerically. By using the coadjoint action of the Lie group G on the dual Lie algebra$\mathprak{g}^\ast$to advance the numerical flow, we devise methods of arbitrary order that automatical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 39; číslo 1; s. 128 - 145
Hlavní autoři: Engø, Kenth, Faltinsen, Stig
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 2002
Témata:
ISSN:0036-1429, 1095-7170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we apply geometric integrators of the RKMK type to the problem of integrating Lie-Poisson systems numerically. By using the coadjoint action of the Lie group G on the dual Lie algebra$\mathprak{g}^\ast$to advance the numerical flow, we devise methods of arbitrary order that automatically stay on the coadjoint orbits. First integrals known as Casimirs are retained to machine accuracy by the numerical algorithm. Within the proposed class of methods we find integrators that also conserve the energy. These schemes are implicit and of second order. Nonlinear iteration in the Lie algebra and linear error growth of the global error are discussed. Numerical experiments with the rigid body and a finite-dimensional truncation of the Euler equations for a two-dimensional (2D) incompressible fluid are used to illustrate the properties of the algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/S0036142999364212