Combining hybrid metaheuristic algorithms and reinforcement learning to improve the optimal control of nonlinear continuous-time systems with input constraints

This paper proposes an innovative method for achieving optimal tracking control in nonlinear continuous-time systems with input constraints. The method combines reinforcement learning and hybrid metaheuristics to enhance the controller’s performance. Specifically, a hybrid metaheuristic algorithm is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & electrical engineering Ročník 116; s. 109179
Hlavní autoři: Khalili Amirabadi, Roya, Solaymani Fard, Omid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2024
Témata:
ISSN:0045-7906, 1879-0755
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes an innovative method for achieving optimal tracking control in nonlinear continuous-time systems with input constraints. The method combines reinforcement learning and hybrid metaheuristics to enhance the controller’s performance. Specifically, a hybrid metaheuristic algorithm is employed to optimize the hyperparameters of a critic neural network, which serves as the system’s controller. The proposed approach is evaluated through extensive simulation studies on a nonlinear system with input constraints. Results demonstrate its superiority over traditional control techniques in terms of accuracy, timeliness, and stability. Notably, the approach effectively eliminates overshoot and steady-state error while providing precise and prompt tracking and showcasing remarkable robustness against model uncertainties. By synergistically integrating reinforcement learning and hybrid metaheuristics, this approach represents a significant advancement in enhancing the control performance of complex nonlinear systems. The simulation studies confirm superiority of the proposed approach over existing techniques, offering a promising solution for achieving optimal tracking control in nonlinear systems with input constraints. This approach holds potential for a wide range of applications, including robotics, aerospace, and manufacturing, where precise and prompt tracking control is critical.
AbstractList This paper proposes an innovative method for achieving optimal tracking control in nonlinear continuous-time systems with input constraints. The method combines reinforcement learning and hybrid metaheuristics to enhance the controller’s performance. Specifically, a hybrid metaheuristic algorithm is employed to optimize the hyperparameters of a critic neural network, which serves as the system’s controller. The proposed approach is evaluated through extensive simulation studies on a nonlinear system with input constraints. Results demonstrate its superiority over traditional control techniques in terms of accuracy, timeliness, and stability. Notably, the approach effectively eliminates overshoot and steady-state error while providing precise and prompt tracking and showcasing remarkable robustness against model uncertainties. By synergistically integrating reinforcement learning and hybrid metaheuristics, this approach represents a significant advancement in enhancing the control performance of complex nonlinear systems. The simulation studies confirm superiority of the proposed approach over existing techniques, offering a promising solution for achieving optimal tracking control in nonlinear systems with input constraints. This approach holds potential for a wide range of applications, including robotics, aerospace, and manufacturing, where precise and prompt tracking control is critical.
ArticleNumber 109179
Author Solaymani Fard, Omid
Khalili Amirabadi, Roya
Author_xml – sequence: 1
  givenname: Roya
  surname: Khalili Amirabadi
  fullname: Khalili Amirabadi, Roya
  email: Roya.khalili.a@gmail.com
– sequence: 2
  givenname: Omid
  surname: Solaymani Fard
  fullname: Solaymani Fard, Omid
  email: soleimani@um.ac.ir, omidsfard@gmail.com
BookMark eNqNkM1uGyEUhVGVSnWSvgN9gHFhfmBmVUVW2lSKlE2yRgxc7GvNwAhwIj9NXrU47iLKKqsrrs75LudckgsfPBDyg7M1Z1z83K9NmBeYwIDfrmtWt2U_cDl8ISvey6FisusuyIqxtqvkwMQ3cpnSnpW34P2KvG7CPKJHv6W74xjR0hmy3sEhYspoqJ62IWLezYlqb2kE9C5EAzP4TCfQ8c2aA8V5ieEZaN4BDUvGWU_UBJ9jmGhwtHx7Ql_0b0v0h3BIVVEBTceUoeBfyhWKfjnkkyTlqNHndE2-Oj0l-P5_XpGn37ePm7vq_uHP383NfWWamueKt6aRgrfgdNtb0TfSjpo5oUdbN87IYbRN4_pO9NqIUY6ytmDaRtTQOl13dXNFhjPXxJBSBKeWWDLEo-JMnZpWe_WuaXVqWp2bLt5fH7wGs854Sq9x-hRhcyZAifiMEFUyCN6AxQgmKxvwE5R_tJCrzQ
CitedBy_id crossref_primary_10_1088_2631_8695_ae0257
crossref_primary_10_1007_s11071_025_11513_5
Cites_doi 10.1109/MCS.2012.2214134
10.1016/j.ifacol.2018.11.115
10.1007/s11768-022-00081-3
10.1016/j.ins.2020.11.057
10.1007/s11063-020-10220-z
10.1049/cth2.12037
10.1016/j.cie.2019.106040
10.1109/FUZZ-IEEE.2012.6251315
10.1007/s10589-010-9329-3
10.1109/TSMC.2022.3220028
10.1109/TNNLS.2015.2441712
10.15388/NA.2016.3.7
10.4249/scholarpedia.2928
10.1016/j.ins.2022.05.048
10.1049/iet-cta.2015.0769
10.1109/DDCLS52934.2021.9455473
10.1016/j.neucom.2018.07.098
10.1017/S0263574720000314
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2024.109179
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2024_109179
S0045790624001071
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c321t-14c37614efa48d6837dba0f6abd23fc79bd33f8568ac6b7b72dec4362e4fa2523
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206598600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sat Nov 29 03:04:42 EST 2025
Tue Nov 18 22:51:08 EST 2025
Tue Jun 18 08:50:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid metaheuristic algorithms
Optimal tracking control
Nonlinear systems
Actor-critic neural network
Reinforcement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-14c37614efa48d6837dba0f6abd23fc79bd33f8568ac6b7b72dec4362e4fa2523
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2024_109179
crossref_citationtrail_10_1016_j_compeleceng_2024_109179
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2024_109179
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (b24) 1965
Mohammadi, Arefi, Setoodeh, Kaynak (b9) 2021; 554
Zargarzadeh, Dierks, Jagannathan (b18) 2015; 26
Dokeroglu, Sevinc, Kucukyilmaz, Cosar (b19) 2019; 137
Kim, Park, Yoo, Lee, Lee (b15) 2018; 51
Gao, Jiang (b5) 2022; 20
Wright (b25) 2010; 7
Lewis, Vrabie, Vamvoudakis (b7) 2012; 32
Abdel-Basset, Abdel-Fatah, Sangaiah (b21) 2018
Chou, Truong (b22) 2020; 389
Gao, Han (b28) 2012; 51
Shi, Yue, Xie (b10) 2020; 396
Itik (b2) 2016; 21
Mishra, Ghosh (b17) 2022
Jalaeian, Fateh, Rahimiyan (b4) 2021; 39
Zhu, Zhao, Li (b11) 2016; 10
Wen, Niu (b16) 2022; 606
Beheshti, Shamsuddin (b20) 2013; 5
Yu, Wang, Sun, Shen (b6) 2022; 53
Zhao, Vishal (b12) 2021; 15
Ye L, Li J, Wang C, Liu H, Liang B. Reinforcement Learning Tracking Control for Unknown Continuous Dynamic Systems. In: IEEE 10th data driven control and learning systems conference. 2021, p. 114–9.
Khalil (b3) 2002
Singer, Nelder (b26) 2009; 4
Jalaeian-F M, Akbarzadeh-T MR, Akbarzadeh A, Ghaemi M. A dynamic-growing fuzzy-neuro controller, application to a 3PSP parallel robot. In: IEEE international conference on fuzzy systems. 2012, p. 1–6.
Lewis, Vrabie, Syrmos (b1) 2012
Zhao (b8) 2020; 51
Molabahrami (b27) 2013
Lee, Park, Choi (b14) 2014; 26
Zhu (10.1016/j.compeleceng.2024.109179_b11) 2016; 10
10.1016/j.compeleceng.2024.109179_b13
Shi (10.1016/j.compeleceng.2024.109179_b10) 2020; 396
Zhao (10.1016/j.compeleceng.2024.109179_b8) 2020; 51
Mishra (10.1016/j.compeleceng.2024.109179_b17) 2022
Wen (10.1016/j.compeleceng.2024.109179_b16) 2022; 606
Gao (10.1016/j.compeleceng.2024.109179_b28) 2012; 51
Itik (10.1016/j.compeleceng.2024.109179_b2) 2016; 21
Jalaeian (10.1016/j.compeleceng.2024.109179_b4) 2021; 39
Gao (10.1016/j.compeleceng.2024.109179_b5) 2022; 20
Zhao (10.1016/j.compeleceng.2024.109179_b12) 2021; 15
Lee (10.1016/j.compeleceng.2024.109179_b14) 2014; 26
Kim (10.1016/j.compeleceng.2024.109179_b15) 2018; 51
(10.1016/j.compeleceng.2024.109179_b24) 1965
Wright (10.1016/j.compeleceng.2024.109179_b25) 2010; 7
Khalil (10.1016/j.compeleceng.2024.109179_b3) 2002
Yu (10.1016/j.compeleceng.2024.109179_b6) 2022; 53
Singer (10.1016/j.compeleceng.2024.109179_b26) 2009; 4
Zargarzadeh (10.1016/j.compeleceng.2024.109179_b18) 2015; 26
Lewis (10.1016/j.compeleceng.2024.109179_b1) 2012
Beheshti (10.1016/j.compeleceng.2024.109179_b20) 2013; 5
Lewis (10.1016/j.compeleceng.2024.109179_b7) 2012; 32
Mohammadi (10.1016/j.compeleceng.2024.109179_b9) 2021; 554
10.1016/j.compeleceng.2024.109179_b23
Dokeroglu (10.1016/j.compeleceng.2024.109179_b19) 2019; 137
Abdel-Basset (10.1016/j.compeleceng.2024.109179_b21) 2018
Molabahrami (10.1016/j.compeleceng.2024.109179_b27) 2013
Chou (10.1016/j.compeleceng.2024.109179_b22) 2020; 389
References_xml – volume: 396
  start-page: 172
  year: 2020
  end-page: 178
  ident: b10
  article-title: Adaptive optimal tracking control for nonlinear continuous-time systems with time delay using value iteration algorithm
  publication-title: Neurocomputing
– volume: 39
  start-page: 200
  year: 2021
  end-page: 216
  ident: b4
  article-title: Bi-level adaptive computed-current impedance controller for electrically driven robots
  publication-title: Robotica
– volume: 20
  start-page: 1
  year: 2022
  end-page: 19
  ident: b5
  article-title: Learning-based adaptive optimal output regulation of linear and nonlinear systems: an overview
  publication-title: Control Theory Technol
– volume: 389
  year: 2020
  ident: b22
  article-title: A novel metaheuristic optimizer inspired by behavior of Jellfish in ocean
  publication-title: Appl Math Comput
– volume: 32
  start-page: 76
  year: 2012
  end-page: 105
  ident: b7
  article-title: Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers
  publication-title: IEEE Control Syst Mag
– volume: 554
  start-page: 84
  year: 2021
  end-page: 98
  ident: b9
  article-title: Optimal tracking control based on reinforcement learning value iteration algorithm for time-delayed nonlinear systems with external disturbances and input constraints
  publication-title: Inform Sci
– volume: 137
  year: 2019
  ident: b19
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput Ind Eng
– volume: 15
  start-page: 260
  year: 2021
  end-page: 271
  ident: b12
  article-title: Neural network-based optimal tracking control for partially unknown discrete-time non-linear systems using reinforcement learning
  publication-title: IET Control Theory Appl
– year: 1965
  ident: b24
  article-title: A simplex method for function minimization
  publication-title: Comput J
– year: 2012
  ident: b1
  article-title: Optimal control
– reference: Jalaeian-F M, Akbarzadeh-T MR, Akbarzadeh A, Ghaemi M. A dynamic-growing fuzzy-neuro controller, application to a 3PSP parallel robot. In: IEEE international conference on fuzzy systems. 2012, p. 1–6.
– volume: 21
  start-page: 400
  year: 2016
  end-page: 412
  ident: b2
  article-title: Optimal control of nonlinear systems with input constraints using linear time varying approximations
  publication-title: Nonlinear Anal Model Control
– start-page: 185
  year: 2018
  end-page: 231
  ident: b21
  article-title: Metaheuristic algorithms: A comprehensive review
  publication-title: Computational intelligence for multimedia big data on the cloud with engineering applications
– volume: 51
  start-page: 257
  year: 2018
  end-page: 262
  ident: b15
  article-title: Deep reinforcement learning based finite-horizon optimal tracking control for nonlinear system
  publication-title: IFAC-PapersOnLine
– volume: 606
  start-page: 368
  year: 2022
  end-page: 379
  ident: b16
  article-title: Optimized tracking control based on reinforcement learning for a class of high-order unknown nonlinear dynamic systems
  publication-title: Inform Sci
– volume: 53
  start-page: 2815
  year: 2022
  end-page: 2827
  ident: b6
  article-title: Optimal control of nonlinear systems with unsymmetrical input constraints and its application to the UAV circumnavigation problem
  publication-title: IEEE Trans Syst Man Cybern A
– volume: 10
  start-page: 1339
  year: 2016
  end-page: 1347
  ident: b11
  article-title: Using reinforcement learning techniques to solve continuous-time non-linear optimal tracking problem without system dynamics
  publication-title: IET Control Theory Appl
– volume: 5
  start-page: 1
  year: 2013
  end-page: 35
  ident: b20
  article-title: A review of population-based meta-heuristic algorithms
  publication-title: Int J Adv Soft Comput Appl
– start-page: 1
  year: 2013
  end-page: 15
  ident: b27
  article-title: Integral mean value method for solving a general nonlinear Fredholm integro-differential equation under the mixed conditions
  publication-title: Commun Numer Anal
– year: 2002
  ident: b3
  article-title: Nonlinear systems
– volume: 4
  start-page: 2928
  year: 2009
  ident: b26
  article-title: Nelder-Mead algorithm
  publication-title: Scholarpedia
– start-page: 1
  year: 2022
  end-page: 20
  ident: b17
  article-title: Variable gain gradient descent-based reinforcement learning for robust optimal tracking control of uncertain nonlinear system with input constraints
  publication-title: Nonlinear Dynam
– reference: Ye L, Li J, Wang C, Liu H, Liang B. Reinforcement Learning Tracking Control for Unknown Continuous Dynamic Systems. In: IEEE 10th data driven control and learning systems conference. 2021, p. 114–9.
– volume: 26
  start-page: 916
  year: 2014
  end-page: 932
  ident: b14
  article-title: Integral reinforcement learning for continuous-time input-affine nonlinear systems with simultaneous invariant explorations
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 7
  start-page: 271
  year: 2010
  end-page: 276
  ident: b25
  article-title: Nelder, Mead, and the other simplex method
  publication-title: Doc Math
– volume: 51
  start-page: 2513
  year: 2020
  end-page: 2530
  ident: b8
  article-title: Neural network based optimal control tracking control of continuous time uncertain nonlinear system via reinforcement learning
  publication-title: Neural Process Lett
– volume: 26
  start-page: 2535
  year: 2015
  end-page: 2549
  ident: b18
  article-title: Optimal control of nonlinear continuous time system in strict feedback form
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 51
  start-page: 259
  year: 2012
  end-page: 277
  ident: b28
  article-title: Implementing the Nelder–Mead simplex algorithm with adaptive parameters
  publication-title: Comput Optim Appl
– volume: 32
  start-page: 76
  issue: 6
  year: 2012
  ident: 10.1016/j.compeleceng.2024.109179_b7
  article-title: Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2012.2214134
– start-page: 185
  year: 2018
  ident: 10.1016/j.compeleceng.2024.109179_b21
  article-title: Metaheuristic algorithms: A comprehensive review
– year: 2002
  ident: 10.1016/j.compeleceng.2024.109179_b3
– volume: 51
  start-page: 257
  issue: 25
  year: 2018
  ident: 10.1016/j.compeleceng.2024.109179_b15
  article-title: Deep reinforcement learning based finite-horizon optimal tracking control for nonlinear system
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.11.115
– start-page: 1
  year: 2022
  ident: 10.1016/j.compeleceng.2024.109179_b17
  article-title: Variable gain gradient descent-based reinforcement learning for robust optimal tracking control of uncertain nonlinear system with input constraints
  publication-title: Nonlinear Dynam
– volume: 20
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.compeleceng.2024.109179_b5
  article-title: Learning-based adaptive optimal output regulation of linear and nonlinear systems: an overview
  publication-title: Control Theory Technol
  doi: 10.1007/s11768-022-00081-3
– volume: 554
  start-page: 84
  year: 2021
  ident: 10.1016/j.compeleceng.2024.109179_b9
  article-title: Optimal tracking control based on reinforcement learning value iteration algorithm for time-delayed nonlinear systems with external disturbances and input constraints
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2020.11.057
– volume: 5
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.compeleceng.2024.109179_b20
  article-title: A review of population-based meta-heuristic algorithms
  publication-title: Int J Adv Soft Comput Appl
– volume: 51
  start-page: 2513
  issue: 3
  year: 2020
  ident: 10.1016/j.compeleceng.2024.109179_b8
  article-title: Neural network based optimal control tracking control of continuous time uncertain nonlinear system via reinforcement learning
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10220-z
– start-page: 1
  year: 2013
  ident: 10.1016/j.compeleceng.2024.109179_b27
  article-title: Integral mean value method for solving a general nonlinear Fredholm integro-differential equation under the mixed conditions
  publication-title: Commun Numer Anal
– volume: 15
  start-page: 260
  issue: 2
  year: 2021
  ident: 10.1016/j.compeleceng.2024.109179_b12
  article-title: Neural network-based optimal tracking control for partially unknown discrete-time non-linear systems using reinforcement learning
  publication-title: IET Control Theory Appl
  doi: 10.1049/cth2.12037
– volume: 137
  year: 2019
  ident: 10.1016/j.compeleceng.2024.109179_b19
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.106040
– ident: 10.1016/j.compeleceng.2024.109179_b23
  doi: 10.1109/FUZZ-IEEE.2012.6251315
– volume: 389
  year: 2020
  ident: 10.1016/j.compeleceng.2024.109179_b22
  article-title: A novel metaheuristic optimizer inspired by behavior of Jellfish in ocean
  publication-title: Appl Math Comput
– volume: 51
  start-page: 259
  issue: 1
  year: 2012
  ident: 10.1016/j.compeleceng.2024.109179_b28
  article-title: Implementing the Nelder–Mead simplex algorithm with adaptive parameters
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-010-9329-3
– volume: 53
  start-page: 2815
  issue: 5
  year: 2022
  ident: 10.1016/j.compeleceng.2024.109179_b6
  article-title: Optimal control of nonlinear systems with unsymmetrical input constraints and its application to the UAV circumnavigation problem
  publication-title: IEEE Trans Syst Man Cybern A
  doi: 10.1109/TSMC.2022.3220028
– volume: 26
  start-page: 2535
  issue: 10
  year: 2015
  ident: 10.1016/j.compeleceng.2024.109179_b18
  article-title: Optimal control of nonlinear continuous time system in strict feedback form
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2441712
– volume: 21
  start-page: 400
  issue: 3
  year: 2016
  ident: 10.1016/j.compeleceng.2024.109179_b2
  article-title: Optimal control of nonlinear systems with input constraints using linear time varying approximations
  publication-title: Nonlinear Anal Model Control
  doi: 10.15388/NA.2016.3.7
– volume: 4
  start-page: 2928
  issue: 7
  year: 2009
  ident: 10.1016/j.compeleceng.2024.109179_b26
  article-title: Nelder-Mead algorithm
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.2928
– volume: 606
  start-page: 368
  year: 2022
  ident: 10.1016/j.compeleceng.2024.109179_b16
  article-title: Optimized tracking control based on reinforcement learning for a class of high-order unknown nonlinear dynamic systems
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2022.05.048
– volume: 7
  start-page: 271
  year: 2010
  ident: 10.1016/j.compeleceng.2024.109179_b25
  article-title: Nelder, Mead, and the other simplex method
  publication-title: Doc Math
– volume: 10
  start-page: 1339
  issue: 12
  year: 2016
  ident: 10.1016/j.compeleceng.2024.109179_b11
  article-title: Using reinforcement learning techniques to solve continuous-time non-linear optimal tracking problem without system dynamics
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2015.0769
– volume: 26
  start-page: 916
  issue: 5
  year: 2014
  ident: 10.1016/j.compeleceng.2024.109179_b14
  article-title: Integral reinforcement learning for continuous-time input-affine nonlinear systems with simultaneous invariant explorations
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: 10.1016/j.compeleceng.2024.109179_b13
  doi: 10.1109/DDCLS52934.2021.9455473
– volume: 396
  start-page: 172
  year: 2020
  ident: 10.1016/j.compeleceng.2024.109179_b10
  article-title: Adaptive optimal tracking control for nonlinear continuous-time systems with time delay using value iteration algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.098
– volume: 39
  start-page: 200
  issue: 2
  year: 2021
  ident: 10.1016/j.compeleceng.2024.109179_b4
  article-title: Bi-level adaptive computed-current impedance controller for electrically driven robots
  publication-title: Robotica
  doi: 10.1017/S0263574720000314
– year: 2012
  ident: 10.1016/j.compeleceng.2024.109179_b1
– year: 1965
  ident: 10.1016/j.compeleceng.2024.109179_b24
  article-title: A simplex method for function minimization
  publication-title: Comput J
SSID ssj0004618
Score 2.3605013
Snippet This paper proposes an innovative method for achieving optimal tracking control in nonlinear continuous-time systems with input constraints. The method...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109179
SubjectTerms Actor-critic neural network
Hybrid metaheuristic algorithms
Nonlinear systems
Optimal tracking control
Reinforcement learning
Title Combining hybrid metaheuristic algorithms and reinforcement learning to improve the optimal control of nonlinear continuous-time systems with input constraints
URI https://dx.doi.org/10.1016/j.compeleceng.2024.109179
Volume 116
WOSCitedRecordID wos001206598600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZLUkp7KH3S9IUKvS0u66dk6GUpCW0PaSEp7M3ItpR12LUXrx2yv6bn_svOSPIjaUtTSi_GiJUl73yeh5j5hpA3npQqiCIIcvxYOgCKzOEhT52ZzISa8diTgdLNJtjxMV8s4i-TyfeuFuZixcqSX17Gm_8qahgDYWPp7F-Iu38oDMA9CB2uIHa43kjw8IWnuuvDdLnDcixsEi2WsjWUzFOxOqvqolmuDTlzLTV1aqZPCbseEmfokRb6uEFqz7QCxbLWTCImsR2zPwzHhqj1YFG2Vbt1sFO9JYe2ZXNFuWkb_MlWN6MwvFE9NYJtKbHVADQdeTRo5MCS2FuEJUQMq2I6XxeYhpAXJi9815uVEwjSd8jmMT0SJl__89qm69tTDS8YcgjNUVtXbjPkNmn1HSC_5sxyZxuNzRlWYRmu316lm_rNn8yDOak4R-lu8KXgbd7i6kiq5ZqmNtfYt09wTVwSc20hVIZAe99jYQw2YH_-8XDxaVSE6xqzb_d4m7wekgl_s-CvnaGRg3N6n9yzkQmdG0Q9IBNZPiR3R3yVj8i3HlvUYItewRYdsEUBW_QKtmiHLdpU1GKLAraoxRa12KKVoj226DVsUYstitiiGlt0hK3H5OvR4en7D47t8OFkvuc2jhtkYODcQCoR8DziPstTMVORSHPPVxmL09z3FQ8jLrIoZSnzcpkF4HOBBhFe6PlPyB5sST4lFHQNeFqR4K7iQawwrokYc_MolAp8XnFAePdXJ5mlv8fNrZIuz_E8GUkpQSklRkoHxOunbgwHzE0mvevkmVhn1jipCYDxz9Of_dv05-TO8FW9IHtN3cqX5FZ20RTb-pWF7g-RMtfS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+hybrid+metaheuristic+algorithms+and+reinforcement+learning+to+improve+the+optimal+control+of+nonlinear+continuous-time+systems+with+input+constraints&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Khalili+Amirabadi%2C+Roya&rft.au=Solaymani+Fard%2C+Omid&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=116&rft_id=info:doi/10.1016%2Fj.compeleceng.2024.109179&rft.externalDocID=S0045790624001071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon