Combining hybrid metaheuristic algorithms and reinforcement learning to improve the optimal control of nonlinear continuous-time systems with input constraints
This paper proposes an innovative method for achieving optimal tracking control in nonlinear continuous-time systems with input constraints. The method combines reinforcement learning and hybrid metaheuristics to enhance the controller’s performance. Specifically, a hybrid metaheuristic algorithm is...
Uloženo v:
| Vydáno v: | Computers & electrical engineering Ročník 116; s. 109179 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2024
|
| Témata: | |
| ISSN: | 0045-7906, 1879-0755 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper proposes an innovative method for achieving optimal tracking control in nonlinear continuous-time systems with input constraints. The method combines reinforcement learning and hybrid metaheuristics to enhance the controller’s performance. Specifically, a hybrid metaheuristic algorithm is employed to optimize the hyperparameters of a critic neural network, which serves as the system’s controller. The proposed approach is evaluated through extensive simulation studies on a nonlinear system with input constraints. Results demonstrate its superiority over traditional control techniques in terms of accuracy, timeliness, and stability. Notably, the approach effectively eliminates overshoot and steady-state error while providing precise and prompt tracking and showcasing remarkable robustness against model uncertainties. By synergistically integrating reinforcement learning and hybrid metaheuristics, this approach represents a significant advancement in enhancing the control performance of complex nonlinear systems. The simulation studies confirm superiority of the proposed approach over existing techniques, offering a promising solution for achieving optimal tracking control in nonlinear systems with input constraints. This approach holds potential for a wide range of applications, including robotics, aerospace, and manufacturing, where precise and prompt tracking control is critical. |
|---|---|
| ISSN: | 0045-7906 1879-0755 |
| DOI: | 10.1016/j.compeleceng.2024.109179 |