Deep learning in fluid dynamics

It was only a matter of time before deep neural networks (DNNs) – deep learning – made their mark in turbulence modelling, or more broadly, in the general area of high-dimensional, complex dynamical systems. In the last decade, DNNs have become a dominant data mining tool for big data applications....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of fluid mechanics Ročník 814; s. 1 - 4
Hlavní autor: Kutz, J. Nathan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 10.03.2017
Témata:
ISSN:0022-1120, 1469-7645
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It was only a matter of time before deep neural networks (DNNs) – deep learning – made their mark in turbulence modelling, or more broadly, in the general area of high-dimensional, complex dynamical systems. In the last decade, DNNs have become a dominant data mining tool for big data applications. Although neural networks have been applied previously to complex fluid flows, the article featured here (Ling et al., J. Fluid Mech., vol. 807, 2016, pp. 155–166) is the first to apply a true DNN architecture, specifically to Reynolds averaged Navier Stokes turbulence models. As one often expects with modern DNNs, performance gains are achieved over competing state-of-the-art methods, suggesting that DNNs may play a critically enabling role in the future of modelling complex flows.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2016.803