Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims...

Full description

Saved in:
Bibliographic Details
Published in:Compel Vol. 38; no. 1; pp. 304 - 324
Main Authors: Mouassa, Souhil, Bouktir, Tarek
Format: Journal Article
Language:English
Published: Bradford Emerald Publishing Limited 24.01.2019
Emerald Group Publishing Limited
Subjects:
ISSN:0332-1649, 2054-5606
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0332-1649
2054-5606
DOI:10.1108/COMPEL-05-2018-0208