Interactive color image segmentation with linear programming

Image segmentation is an important and fundamental task for image and vision understanding. This paper describes a linear programming (LP) approach for segmenting a color image into multiple regions. Compared with the recently proposed semi-definite programming (SDP)-based approach, our approach has...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Machine vision and applications Ročník 21; číslo 4; s. 403 - 412
Hlavní autori: Li, Hongdong, Shen, Chunhua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.06.2010
Predmet:
ISSN:0932-8092, 1432-1769
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Image segmentation is an important and fundamental task for image and vision understanding. This paper describes a linear programming (LP) approach for segmenting a color image into multiple regions. Compared with the recently proposed semi-definite programming (SDP)-based approach, our approach has a simpler mathematical formulation, and a far lower computational complexity. In particular, to segment an image of M  × N pixels into k classes, our method requires only O (( M N k ) m ) complexity—a sharp contrast to the complexity of O (( M N k ) 2 n ) if the SDP method is adopted, where m and n are the polynomial complexity of the corresponding LP solver and SDP solver, respectively (in general we have m ≪ n ). Such a significant reduction in computation readily enables our algorithm to process color images of reasonable sizes. For example, while the existing SDP relaxation algorithm is only able to segment a toy-size image of, e.g., 10 × 10 to 30 × 30 pixels in hours time, our algorithm can process larger color image of, say, 100 × 100 to 500 × 500 image in much shorter time.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0932-8092
1432-1769
DOI:10.1007/s00138-008-0171-x