BP-based supervised learning algorithm for multilayer photonic spiking neural network and hardware implementation
We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the information is encoded into spike trains with different strength, and the SNN is trained according to different patterns composed of different...
Saved in:
| Published in: | Optics express Vol. 31; no. 10; p. 16549 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
08.05.2023
|
| ISSN: | 1094-4087, 1094-4087 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the information is encoded into spike trains with different strength, and the SNN is trained according to different patterns composed of different spike numbers of the output neurons. Furthermore, the classification task is performed numerically and experimentally based on the supervised learning algorithm in the SNN. The SNN is composed of photonic spiking neuron based on vertical-cavity surface-emitting laser which is functionally similar to leaky-integrate and fire neuron. The results prove the demonstration of the algorithm implementation on hardware. To seek ultra-low power consumption and ultra-low delay, it is great significance to design and implement a hardware-friendly learning algorithm of photonic neural networks and realize hardware-algorithm collaborative computing. |
|---|---|
| AbstractList | We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the information is encoded into spike trains with different strength, and the SNN is trained according to different patterns composed of different spike numbers of the output neurons. Furthermore, the classification task is performed numerically and experimentally based on the supervised learning algorithm in the SNN. The SNN is composed of photonic spiking neuron based on vertical-cavity surface-emitting laser which is functionally similar to leaky-integrate and fire neuron. The results prove the demonstration of the algorithm implementation on hardware. To seek ultra-low power consumption and ultra-low delay, it is great significance to design and implement a hardware-friendly learning algorithm of photonic neural networks and realize hardware-algorithm collaborative computing. We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the information is encoded into spike trains with different strength, and the SNN is trained according to different patterns composed of different spike numbers of the output neurons. Furthermore, the classification task is performed numerically and experimentally based on the supervised learning algorithm in the SNN. The SNN is composed of photonic spiking neuron based on vertical-cavity surface-emitting laser which is functionally similar to leaky-integrate and fire neuron. The results prove the demonstration of the algorithm implementation on hardware. To seek ultra-low power consumption and ultra-low delay, it is great significance to design and implement a hardware-friendly learning algorithm of photonic neural networks and realize hardware-algorithm collaborative computing.We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the information is encoded into spike trains with different strength, and the SNN is trained according to different patterns composed of different spike numbers of the output neurons. Furthermore, the classification task is performed numerically and experimentally based on the supervised learning algorithm in the SNN. The SNN is composed of photonic spiking neuron based on vertical-cavity surface-emitting laser which is functionally similar to leaky-integrate and fire neuron. The results prove the demonstration of the algorithm implementation on hardware. To seek ultra-low power consumption and ultra-low delay, it is great significance to design and implement a hardware-friendly learning algorithm of photonic neural networks and realize hardware-algorithm collaborative computing. |
| Author | Han, Yanan Zhang, Wu Han, Genquan Guo, Xingxing Zhang, Yahui Tan, Qinggui Hao, Yue Xiang, Shuiying |
| Author_xml | – sequence: 1 givenname: Yahui surname: Zhang fullname: Zhang, Yahui – sequence: 2 givenname: Shuiying orcidid: 0000-0002-1698-2083 surname: Xiang fullname: Xiang, Shuiying – sequence: 3 givenname: Yanan surname: Han fullname: Han, Yanan – sequence: 4 givenname: Xingxing surname: Guo fullname: Guo, Xingxing – sequence: 5 givenname: Wu surname: Zhang fullname: Zhang, Wu – sequence: 6 givenname: Qinggui surname: Tan fullname: Tan, Qinggui – sequence: 7 givenname: Genquan surname: Han fullname: Han, Genquan – sequence: 8 givenname: Yue surname: Hao fullname: Hao, Yue |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37157731$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0T1PwzAQBmALgfge-APIIwwBO3ZiZ4SqfEhIZYA5cpxLa3DsYDsg_j2tWhBCTPcOz510dwdo23kHCJ1QckFZyS9n0wsuBeFiC-1TUvGMEym2f-U9dBDjCyGUi0rsoj0maCEEo_vo7foxa1SEFsdxgPBuVtGCCs64OVZ27oNJix53PuB-tMlY9QkBDwufvDMax8G8rqSDMSi7LOnDh1esXIsXKrQfKgA2_WChB5dUMt4doZ1O2QjHm3qInm-mT5O77GF2ez-5esg0y0nKmqaSHW8gV0IWmrGmzHOQhIIuqlK0vGKs06QjuYSKqKbkrdBKakHbVpQFEHaIztZzh-DfRoip7k3UYK1y4MdY55LSopQsr5b0dEPHpoe2HoLpVfisv8-0BOdroIOPMUD3QyipVy-oZ9N6_YKlvfxjtVlvnoIy9p-OL1OoigE |
| CitedBy_id | crossref_primary_10_35848_1347_4065_ad53b2 |
| Cites_doi | 10.1007/s11432-020-3040-1 10.1109/JSTQE.2017.2678170 10.1038/s41586-019-1157-8 10.1109/IPC53466.2022.9975676 10.1103/PhysRevA.72.033808 10.1126/science.1254642 10.1016/S0030-4018(98)00568-9 10.1007/s10489-022-04258-w 10.1038/323533a0 10.1038/nn1643 10.1364/PRJ.413742 10.1364/OE.476110 10.1109/LED.2022.3218626 10.1109/JLT.2022.3146157 10.1109/ACCESS.2018.2878940 10.1109/TASLP.2022.3221011 10.1063/1.1330217 10.1515/nanoph-2022-0441 10.1109/TNNLS.2020.3006263 10.1109/JSTQE.2019.2929187 10.1109/MSP.2019.2931595 10.1364/ACPC.2021.T4A.244 10.1109/JSTQE.2017.2685140 10.1109/MM.2018.112130359 10.1109/JSTQE.2022.3226138 10.3390/electronics11132097 10.34133/icomputing.0031 10.1364/OPTICA.468347 10.1109/TBCAS.2017.2759700 10.1364/OPTICA.475493 10.1109/LES.2020.3025873 10.1162/neco.2009.11-08-901 10.1364/OPTCON.461448 10.1109/JSTQE.2004.837012 10.1109/TCDS.2018.2833071 10.1109/JSTQE.2022.3217819 10.1109/JSTQE.2013.2257700 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1364/OE.487047 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 37157731 10_1364_OE_487047 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
| ID | FETCH-LOGICAL-c320t-bb98f4be2a785c33b622e801ec5967d4933fc0f028e90ab64d7ca8c71dd765e03 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000996319400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Thu Jul 10 18:46:52 EDT 2025 Wed Feb 19 02:23:48 EST 2025 Sat Nov 29 06:06:57 EST 2025 Tue Nov 18 21:25:27 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c320t-bb98f4be2a785c33b622e801ec5967d4933fc0f028e90ab64d7ca8c71dd765e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1698-2083 |
| OpenAccessLink | https://doi.org/10.1364/oe.487047 |
| PMID | 37157731 |
| PQID | 2811568329 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2811568329 pubmed_primary_37157731 crossref_primary_10_1364_OE_487047 crossref_citationtrail_10_1364_OE_487047 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-08 2023-May-08 20230508 |
| PublicationDateYYYYMMDD | 2023-05-08 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics express |
| PublicationTitleAlternate | Opt Express |
| PublicationYear | 2023 |
| References | Zhang (oe-31-10-16549-R9) 2021; 64 Vladimirov (oe-31-10-16549-R33) 2005; 72 Merolla (oe-31-10-16549-R16) 2014; 345 Wu (oe-31-10-16549-R25) 2023; 29 Nahmias (oe-31-10-16549-R38) 2013; 19 Chlouverakis (oe-31-10-16549-R32) 2004; 10 oe-31-10-16549-R19 Fu (oe-31-10-16549-R30) 2022; 30 Moradi (oe-31-10-16549-R18) 2018; 12 Jha (oe-31-10-16549-R31) 2022; 40 Deng (oe-31-10-16549-R34) 2017; 23 Xiang (oe-31-10-16549-R40) 2023; 10 Arsalan (oe-31-10-16549-R5) 2022; 1 Lian (oe-31-10-16549-R26) 2022; 43 Ponulak (oe-31-10-16549-R6) 2010; 22 Chen (oe-31-10-16549-R43) 2022; 1 Xiang (oe-31-10-16549-R46) 2021; 32 Deng (oe-31-10-16549-R37) 2018; 6 Xiao (oe-31-10-16549-R1) 2023; 31 Lee (oe-31-10-16549-R8) 2019; 11 Xiang (oe-31-10-16549-R35) 2017; 23 Balaji (oe-31-10-16549-R4) 2020; 13 Filipovich (oe-31-10-16549-R22) 2022; 9 Dubbeldam (oe-31-10-16549-R39) 1999; 159 Han (oe-31-10-16549-R45) 2021; 9 Xiang (oe-31-10-16549-R13) 2022; 11 Gütig (oe-31-10-16549-R7) 2006; 9 Pammi (oe-31-10-16549-R42) 2020; 26 Shi (oe-31-10-16549-R24) 2023; 29 Davies (oe-31-10-16549-R17) 2018; 38 Liu (oe-31-10-16549-R27) 2021 oe-31-10-16549-R23 Willemsen (oe-31-10-16549-R36) 2000; 77 Rumelhart (oe-31-10-16549-R47) 1986; 323 Neftci (oe-31-10-16549-R15) 2019; 36 Brückerhoff-Plückelmann (oe-31-10-16549-R20) 2023; 12 Feldmann (oe-31-10-16549-R44) 2019; 569 |
| References_xml | – volume: 64 start-page: 122403 year: 2021 ident: oe-31-10-16549-R9 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-020-3040-1 – volume: 23 start-page: 1 year: 2017 ident: oe-31-10-16549-R35 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2017.2678170 – volume: 569 start-page: 208 year: 2019 ident: oe-31-10-16549-R44 publication-title: Nature doi: 10.1038/s41586-019-1157-8 – ident: oe-31-10-16549-R19 doi: 10.1109/IPC53466.2022.9975676 – volume: 72 start-page: 033808 year: 2005 ident: oe-31-10-16549-R33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.033808 – volume: 345 start-page: 668 year: 2014 ident: oe-31-10-16549-R16 publication-title: Science doi: 10.1126/science.1254642 – volume: 159 start-page: 325 year: 1999 ident: oe-31-10-16549-R39 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(98)00568-9 – volume: 1 start-page: 1 year: 2022 ident: oe-31-10-16549-R5 publication-title: Appl. Intell. doi: 10.1007/s10489-022-04258-w – volume: 323 start-page: 533 year: 1986 ident: oe-31-10-16549-R47 publication-title: Nature doi: 10.1038/323533a0 – volume: 9 start-page: 420 year: 2006 ident: oe-31-10-16549-R7 publication-title: Nat. Neurosci. doi: 10.1038/nn1643 – volume: 9 start-page: B119 year: 2021 ident: oe-31-10-16549-R45 publication-title: Photonics Res. doi: 10.1364/PRJ.413742 – volume: 30 start-page: 44943 year: 2022 ident: oe-31-10-16549-R30 publication-title: Opt. Express doi: 10.1364/OE.476110 – volume: 43 start-page: 2192 year: 2022 ident: oe-31-10-16549-R26 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2022.3218626 – volume: 40 start-page: 2901 year: 2022 ident: oe-31-10-16549-R31 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2022.3146157 – volume: 6 start-page: 67951 year: 2018 ident: oe-31-10-16549-R37 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2878940 – volume: 31 start-page: 439 year: 2023 ident: oe-31-10-16549-R1 publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2022.3221011 – volume: 77 start-page: 3514 year: 2000 ident: oe-31-10-16549-R36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1330217 – volume: 12 start-page: 819 year: 2023 ident: oe-31-10-16549-R20 publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0441 – volume: 32 start-page: 2494 year: 2021 ident: oe-31-10-16549-R46 publication-title: IEEE Trans. Neural Netw. Learning Syst. doi: 10.1109/TNNLS.2020.3006263 – volume: 26 start-page: 1 year: 2020 ident: oe-31-10-16549-R42 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2019.2929187 – volume: 36 start-page: 51 year: 2019 ident: oe-31-10-16549-R15 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2931595 – year: 2021 ident: oe-31-10-16549-R27 article-title: An energy-efficient non-volatile silicon photonic accelerator for convolutional neural networks (NVSP-CNNs) doi: 10.1364/ACPC.2021.T4A.244 – volume: 23 start-page: 1 year: 2017 ident: oe-31-10-16549-R34 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2017.2685140 – volume: 38 start-page: 82 year: 2018 ident: oe-31-10-16549-R17 publication-title: IEEE Micro doi: 10.1109/MM.2018.112130359 – volume: 29 start-page: 1 year: 2023 ident: oe-31-10-16549-R24 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2022.3226138 – volume: 11 start-page: 2097 year: 2022 ident: oe-31-10-16549-R13 publication-title: Electronics doi: 10.3390/electronics11132097 – ident: oe-31-10-16549-R23 doi: 10.34133/icomputing.0031 – volume: 10 start-page: 162 year: 2023 ident: oe-31-10-16549-R40 publication-title: Optica doi: 10.1364/OPTICA.468347 – volume: 12 start-page: 106 year: 2018 ident: oe-31-10-16549-R18 publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2017.2759700 – volume: 9 start-page: 1323 year: 2022 ident: oe-31-10-16549-R22 publication-title: Optica doi: 10.1364/OPTICA.475493 – volume: 13 start-page: 142 year: 2020 ident: oe-31-10-16549-R4 publication-title: IEEE Comput. Archit. Lett. doi: 10.1109/LES.2020.3025873 – volume: 22 start-page: 467 year: 2010 ident: oe-31-10-16549-R6 publication-title: Neural Comput. doi: 10.1162/neco.2009.11-08-901 – volume: 1 start-page: 1859 year: 2022 ident: oe-31-10-16549-R43 publication-title: Opt. Commun. doi: 10.1364/OPTCON.461448 – volume: 10 start-page: 982 year: 2004 ident: oe-31-10-16549-R32 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2004.837012 – volume: 11 start-page: 384 year: 2019 ident: oe-31-10-16549-R8 publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2833071 – volume: 29 start-page: 1 year: 2023 ident: oe-31-10-16549-R25 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2022.3217819 – volume: 19 start-page: 1 year: 2013 ident: oe-31-10-16549-R38 publication-title: IEEE J. Select. Topics Quantum Electron. doi: 10.1109/JSTQE.2013.2257700 |
| SSID | ssj0014797 |
| Score | 2.4424286 |
| Snippet | We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 16549 |
| Title | BP-based supervised learning algorithm for multilayer photonic spiking neural network and hardware implementation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37157731 https://www.proquest.com/docview/2811568329 |
| Volume | 31 |
| WOSCitedRecordID | wos000996319400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLa6ARKXiW86oDIIIaQqkMROnBwBdXAY7Q6dFE5R4tg0UpZm_RjlwokfzmvHTjupSOPAJbIsN6nyPHm_7Reh16EnJSG5dHyfqxZmMMpzmjuMcMlITnyv4LrZBBuPoySJz3q933YvzFXF6jrabOLmv0INcwC22jr7D3B3N4UJGAPocAXY4Xoj4D-eOUo1FcPlulGCQA0rGwDJqu_zRbmaXejyQl1NWGVgdQ-b2Xylm-Esm1JFz4fqoEuAr27LxHWOQW3Q-qEqxcoLW3XewWrs20mjj30Wm6Yr7diNSn_LZuvSzialjVXD5E-rQrU0rNvF9Za6n9c6ppvAso1daoIVflsauCtfwZsEl9XoWLFnzghloxoM-dwdEau2X8V7hT8JKYAzGb0DJ8ylbKvhbFZ_PElPzk9P0-komb5pLh3Ve0zl6E0jlgN0y2dBrAoDv_4adbkoytoWPfZvmvOp4Gnvu2ddt2r-4qpok2V6Dx0ZXwN_aDlyH_VE_QDd0TW_fPkQXVqm4C1TsGUK7piCgSl4yxRsmYINU3DLFGyYgoEp2DIFX2fKI3R-Mpp--uKYDhwOJ767gs82jiTNhZ-xKODwTYe-L8CmETyIQ1bQmBDJXQk2qojdLA9pwXgWceYVBQsD4ZLH6LCe1-IpwiSSPKdB4RHCqUuzOGMyl0yAQy_BJpJ99Na-wZSb4-lVl5Qq1TnXkKaTUdq-7D561S1t2jNZ9i16aWFIQWKqNFhWi_l6mfoReEEhaLK4j560-HS3IcwLGCPe8Q1-_Qzd3VL8OTpcLdbiBbrNr1blcjFAByyJBjrEM9B8-gOmfp7E |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BP-based+supervised+learning+algorithm+for+multilayer+photonic+spiking+neural+network+and+hardware+implementation&rft.jtitle=Optics+express&rft.au=Zhang%2C+Yahui&rft.au=Xiang%2C+Shuiying&rft.au=Han%2C+Yanan&rft.au=Guo%2C+Xingxing&rft.date=2023-05-08&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=10&rft.spage=16549&rft_id=info:doi/10.1364%2FOE.487047&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |