Analysis of Finite Element Methods and Domain Decomposition Algorithms for a Fluid-Solid Interaction Problem

This paper is concerned with the finite element Galerkin approximations for a fluid-solid interaction model proposed in [X. Feng, P. Lee, and Y. Wei, Appl. Anal, submitted]. Both continuous-time and discrete-time approximations are formulated and analyzed. Optimal order a priori estimates for the er...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on numerical analysis Ročník 38; číslo 4; s. 1312 - 1336
Hlavný autor: Feng, Xiaobing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia, PA Society for Industrial and Applied Mathematics 2001
Predmet:
ISSN:0036-1429, 1095-7170
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper is concerned with the finite element Galerkin approximations for a fluid-solid interaction model proposed in [X. Feng, P. Lee, and Y. Wei, Appl. Anal, submitted]. Both continuous-time and discrete-time approximations are formulated and analyzed. Optimal order a priori estimates for the errors in L∞(H1) and L∞(L2) are derived. The main difficulty for the error estimates is caused by the interface conditions which describe the interaction between a fluid and a solid on their contact surface, and it is overcome by using a boundary duality argument of Douglas and Dupont [Numer. Math., 20 (1973), pp. 213-237] to handle the terms involving the interface conditions. Parallelizable domain decomposition algorithms are also proposed and analyzed for efficiently solving the finite element systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/S0036142999361529