Analysis of Finite Element Methods and Domain Decomposition Algorithms for a Fluid-Solid Interaction Problem
This paper is concerned with the finite element Galerkin approximations for a fluid-solid interaction model proposed in [X. Feng, P. Lee, and Y. Wei, Appl. Anal, submitted]. Both continuous-time and discrete-time approximations are formulated and analyzed. Optimal order a priori estimates for the er...
Uložené v:
| Vydané v: | SIAM journal on numerical analysis Ročník 38; číslo 4; s. 1312 - 1336 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
2001
|
| Predmet: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper is concerned with the finite element Galerkin approximations for a fluid-solid interaction model proposed in [X. Feng, P. Lee, and Y. Wei, Appl. Anal, submitted]. Both continuous-time and discrete-time approximations are formulated and analyzed. Optimal order a priori estimates for the errors in L∞(H1) and L∞(L2) are derived. The main difficulty for the error estimates is caused by the interface conditions which describe the interaction between a fluid and a solid on their contact surface, and it is overcome by using a boundary duality argument of Douglas and Dupont [Numer. Math., 20 (1973), pp. 213-237] to handle the terms involving the interface conditions. Parallelizable domain decomposition algorithms are also proposed and analyzed for efficiently solving the finite element systems. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/S0036142999361529 |