Deringing and denoising in extremely under-sampled Fourier single pixel imaging

Undersampling in Fourier single pixel imaging (FSI) is often employed to reduce imaging time for real-time applications. However, the undersampled reconstruction contains ringing artifacts (Gibbs phenomenon) that occur because the high-frequency target information is not recorded. Furthermore, by em...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optics express Ročník 28; číslo 5; s. 7360
Hlavní autoři: Rizvi, Saad, Cao, Jie, Zhang, Kaiyu, Hao, Qun
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 02.03.2020
ISSN:1094-4087, 1094-4087
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Undersampling in Fourier single pixel imaging (FSI) is often employed to reduce imaging time for real-time applications. However, the undersampled reconstruction contains ringing artifacts (Gibbs phenomenon) that occur because the high-frequency target information is not recorded. Furthermore, by employing 3-step FSI strategy (reduced measurements with low noise suppression) with a low-grade sensor (i.e., photodiode), this ringing is coupled with noise to produce unwanted artifacts, lowering image quality. To improve the imaging quality of real-time FSI, a fast image reconstruction framework based on deep convolutional autoencoder network (DCAN) is proposed. The network through context learning over FSI artifacts is capable of deringing, denoising, and recovering details in 256 × 256 images. The promising experimental results show that the proposed deep-learning-based FSI outperforms conventional FSI in terms of image quality even at very low sampling rates (1-4%).
AbstractList Undersampling in Fourier single pixel imaging (FSI) is often employed to reduce imaging time for real-time applications. However, the undersampled reconstruction contains ringing artifacts (Gibbs phenomenon) that occur because the high-frequency target information is not recorded. Furthermore, by employing 3-step FSI strategy (reduced measurements with low noise suppression) with a low-grade sensor (i.e., photodiode), this ringing is coupled with noise to produce unwanted artifacts, lowering image quality. To improve the imaging quality of real-time FSI, a fast image reconstruction framework based on deep convolutional autoencoder network (DCAN) is proposed. The network through context learning over FSI artifacts is capable of deringing, denoising, and recovering details in 256 × 256 images. The promising experimental results show that the proposed deep-learning-based FSI outperforms conventional FSI in terms of image quality even at very low sampling rates (1-4%).
Undersampling in Fourier single pixel imaging (FSI) is often employed to reduce imaging time for real-time applications. However, the undersampled reconstruction contains ringing artifacts (Gibbs phenomenon) that occur because the high-frequency target information is not recorded. Furthermore, by employing 3-step FSI strategy (reduced measurements with low noise suppression) with a low-grade sensor (i.e., photodiode), this ringing is coupled with noise to produce unwanted artifacts, lowering image quality. To improve the imaging quality of real-time FSI, a fast image reconstruction framework based on deep convolutional autoencoder network (DCAN) is proposed. The network through context learning over FSI artifacts is capable of deringing, denoising, and recovering details in 256 × 256 images. The promising experimental results show that the proposed deep-learning-based FSI outperforms conventional FSI in terms of image quality even at very low sampling rates (1-4%).Undersampling in Fourier single pixel imaging (FSI) is often employed to reduce imaging time for real-time applications. However, the undersampled reconstruction contains ringing artifacts (Gibbs phenomenon) that occur because the high-frequency target information is not recorded. Furthermore, by employing 3-step FSI strategy (reduced measurements with low noise suppression) with a low-grade sensor (i.e., photodiode), this ringing is coupled with noise to produce unwanted artifacts, lowering image quality. To improve the imaging quality of real-time FSI, a fast image reconstruction framework based on deep convolutional autoencoder network (DCAN) is proposed. The network through context learning over FSI artifacts is capable of deringing, denoising, and recovering details in 256 × 256 images. The promising experimental results show that the proposed deep-learning-based FSI outperforms conventional FSI in terms of image quality even at very low sampling rates (1-4%).
Author Cao, Jie
Zhang, Kaiyu
Hao, Qun
Rizvi, Saad
Author_xml – sequence: 1
  givenname: Saad
  orcidid: 0000-0003-3942-0857
  surname: Rizvi
  fullname: Rizvi, Saad
– sequence: 2
  givenname: Jie
  surname: Cao
  fullname: Cao, Jie
– sequence: 3
  givenname: Kaiyu
  surname: Zhang
  fullname: Zhang, Kaiyu
– sequence: 4
  givenname: Qun
  surname: Hao
  fullname: Hao, Qun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32225966$$D View this record in MEDLINE/PubMed
BookMark eNpt0F1LwzAUBuAgEzenF_4ByaVedEvz0Y9LmZsKg97odUmTM4mkaU1a2P69LZsiIoSTc-DJIbyXaOIaBwjdxGQRs4Qvi_WCZYIydoZmMcl5xEmWTn71U3QZwgchMU_z9AJNGaVU5EkyQ8UjeOPeh4Ol01iDa0wYJ-Mw7DsPNdgD7p0GHwVZtxY03jS9N-Dx6Czg1uzBYlPLccsVOt9JG-D6dM_R22b9unqOtsXTy-phGylGSReJXClBQVSCK6kyAkpSJnRWEZFALBJdSaGrdKip1HHGpM45EJVorkTCSMrm6O64t_XNZw-hK2sTFFgrHTR9KCnLeMZplpKB3p5oX9Wgy9YPf_WH8juEAdwfgfJNCB52PyQm5RhwWazLY8CDXf6xynSyM43rvDT2nxdfNAh8tA
CitedBy_id crossref_primary_10_1038_s41598_020_68401_8
crossref_primary_10_1016_j_optcom_2023_129470
crossref_primary_10_1117_1_JEI_33_2_023044
crossref_primary_10_1002_jbio_202200045
crossref_primary_10_1016_j_optlastec_2023_109710
crossref_primary_10_1016_j_optlaseng_2022_107391
crossref_primary_10_3390_s24102963
crossref_primary_10_1016_j_optlastec_2023_109651
crossref_primary_10_1016_j_optlastec_2025_113655
crossref_primary_10_1109_JSTQE_2023_3272642
crossref_primary_10_1016_j_optlastec_2023_110085
crossref_primary_10_3390_electronics14173463
crossref_primary_10_1109_TTHZ_2021_3132160
crossref_primary_10_3390_app14166875
crossref_primary_10_1007_s11432_022_3553_1
crossref_primary_10_1016_j_optcom_2024_131027
crossref_primary_10_1016_j_optcom_2023_130011
crossref_primary_10_1016_j_optcom_2024_130930
crossref_primary_10_1016_j_optlastec_2024_111249
crossref_primary_10_1109_TCI_2023_3282041
crossref_primary_10_1016_j_optlaseng_2022_106970
crossref_primary_10_1016_j_optlastec_2025_112450
crossref_primary_10_3390_s20247093
crossref_primary_10_1016_j_optlastec_2025_112695
crossref_primary_10_1103_PhysRevApplied_19_044025
crossref_primary_10_1016_j_optlaseng_2022_107406
crossref_primary_10_3390_photonics12060568
crossref_primary_10_1016_j_pes_2025_100056
crossref_primary_10_1364_AO_487479
Cites_doi 10.1109/TIP.2007.891788
10.1364/OE.25.019619
10.1364/OE.27.025560
10.1364/OL.44.003278
10.1364/OE.26.020009
10.1364/OE.17.008567
10.1038/s41598-018-30390-0
10.1109/TIT.2006.871582
10.1109/TIP.2016.2598681
10.1103/PhysRevA.78.061802
10.1364/AO.58.008471
10.1364/OPTICA.6.000921
10.1364/OE.21.023068
10.1364/OE.25.017466
10.1038/s41598-017-12228-3
10.3390/s19194190
10.1364/OE.26.031094
10.1364/OE.27.014231
10.1364/OE.20.016892
10.1002/mrm.25866
10.1364/JOSAA.29.001556
10.1063/1.3238296
10.1038/s41598-018-20521-y
10.1126/science.1234454
10.1038/ncomms7225
10.1038/s41598-018-24731-2
10.1364/OE.18.007138
10.1038/059200b0
10.1109/TIP.2003.819861
10.1364/OE.26.016547
10.1103/PhysRevLett.104.253603
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.385233
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 32225966
10_1364_OE_385233
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c320t-59cc52e5b54cac80eca235d8b056e156dba5db7ba57ad183ad94e0c6d4c563073
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518435600117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Thu Oct 02 12:09:35 EDT 2025
Wed Feb 19 02:31:11 EST 2025
Sat Nov 29 06:13:41 EST 2025
Tue Nov 18 22:17:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-59cc52e5b54cac80eca235d8b056e156dba5db7ba57ad183ad94e0c6d4c563073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3942-0857
OpenAccessLink https://doi.org/10.1364/oe.385233
PMID 32225966
PQID 2384842870
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2384842870
pubmed_primary_32225966
crossref_primary_10_1364_OE_385233
crossref_citationtrail_10_1364_OE_385233
PublicationCentury 2000
PublicationDate 2020-03-02
2020-Mar-02
20200302
PublicationDateYYYYMMDD 2020-03-02
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2020
References Foi (oe-28-5-7360-R20) 2007; 16
Katkovnik (oe-28-5-7360-R11) 2012; 29
Zhang (oe-28-5-7360-R13) 2017; 7
Wang (oe-28-5-7360-R35) 2004; 13
Cai (oe-28-5-7360-R22) 2016; 25
Wang (oe-28-5-7360-R29) 2019; 27
Huang (oe-28-5-7360-R14) 2018; 26
Donoho (oe-28-5-7360-R10) 2006; 52
Zhai (oe-28-5-7360-R25) 2019; 58
Croton (oe-28-5-7360-R16) 2019; 27
Czajkowski (oe-28-5-7360-R36) 2018; 26
Veraart (oe-28-5-7360-R19) 2016; 76
Satat (oe-28-5-7360-R23) 2017; 25
Barbastathis (oe-28-5-7360-R21) 2019; 6
Welsh (oe-28-5-7360-R7) 2013; 21
Caramazza (oe-28-5-7360-R24) 2018; 8
Zhang (oe-28-5-7360-R3) 2015; 6
Peng (oe-28-5-7360-R8) 2018; 26
Katz (oe-28-5-7360-R12) 2009; 95
Münch (oe-28-5-7360-R17) 2009; 17
Jung (oe-28-5-7360-R18) 2010; 18
Zhang (oe-28-5-7360-R2) 2017; 25
Sun (oe-28-5-7360-R5) 2012; 20
Ferri (oe-28-5-7360-R4) 2010; 104
Sun (oe-28-5-7360-R6) 2013; 340
Gibbs (oe-28-5-7360-R15) 1898; 59
Zhao (oe-28-5-7360-R9) 2019; 44
Rizvi (oe-28-5-7360-R28) 2019; 19
Shapiro (oe-28-5-7360-R1) 2008; 78
Higham (oe-28-5-7360-R26) 2018; 8
He (oe-28-5-7360-R27) 2018; 8
References_xml – volume: 16
  start-page: 1395
  year: 2007
  ident: oe-28-5-7360-R20
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.891788
– volume: 25
  start-page: 19619
  year: 2017
  ident: oe-28-5-7360-R2
  publication-title: Opt. Express
  doi: 10.1364/OE.25.019619
– volume: 27
  start-page: 25560
  year: 2019
  ident: oe-28-5-7360-R29
  publication-title: Opt. Express
  doi: 10.1364/OE.27.025560
– volume: 44
  start-page: 3278
  year: 2019
  ident: oe-28-5-7360-R9
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.003278
– volume: 26
  start-page: 20009
  year: 2018
  ident: oe-28-5-7360-R36
  publication-title: Opt. Express
  doi: 10.1364/OE.26.020009
– volume: 17
  start-page: 8567
  year: 2009
  ident: oe-28-5-7360-R17
  publication-title: Opt. Express
  doi: 10.1364/OE.17.008567
– volume: 8
  start-page: 11945
  year: 2018
  ident: oe-28-5-7360-R24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30390-0
– volume: 52
  start-page: 1289
  year: 2006
  ident: oe-28-5-7360-R10
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 25
  start-page: 5187
  year: 2016
  ident: oe-28-5-7360-R22
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2598681
– volume: 78
  start-page: 061802
  year: 2008
  ident: oe-28-5-7360-R1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.061802
– volume: 58
  start-page: 8471
  year: 2019
  ident: oe-28-5-7360-R25
  publication-title: Appl. Opt.
  doi: 10.1364/AO.58.008471
– volume: 6
  start-page: 921
  year: 2019
  ident: oe-28-5-7360-R21
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000921
– volume: 21
  start-page: 23068
  year: 2013
  ident: oe-28-5-7360-R7
  publication-title: Opt. Express
  doi: 10.1364/OE.21.023068
– volume: 25
  start-page: 17466
  year: 2017
  ident: oe-28-5-7360-R23
  publication-title: Opt. Express
  doi: 10.1364/OE.25.017466
– volume: 7
  start-page: 12029
  year: 2017
  ident: oe-28-5-7360-R13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12228-3
– volume: 19
  start-page: 4190
  year: 2019
  ident: oe-28-5-7360-R28
  publication-title: Sensors
  doi: 10.3390/s19194190
– volume: 26
  start-page: 31094
  year: 2018
  ident: oe-28-5-7360-R8
  publication-title: Opt. Express
  doi: 10.1364/OE.26.031094
– volume: 27
  start-page: 14231
  year: 2019
  ident: oe-28-5-7360-R16
  publication-title: Opt. Express
  doi: 10.1364/OE.27.014231
– volume: 20
  start-page: 16892
  year: 2012
  ident: oe-28-5-7360-R5
  publication-title: Opt. Express
  doi: 10.1364/OE.20.016892
– volume: 76
  start-page: 301
  year: 2016
  ident: oe-28-5-7360-R19
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25866
– volume: 29
  start-page: 1556
  year: 2012
  ident: oe-28-5-7360-R11
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.29.001556
– volume: 95
  start-page: 131110
  year: 2009
  ident: oe-28-5-7360-R12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3238296
– volume: 8
  start-page: 2369
  year: 2018
  ident: oe-28-5-7360-R26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20521-y
– volume: 340
  start-page: 844
  year: 2013
  ident: oe-28-5-7360-R6
  publication-title: Science
  doi: 10.1126/science.1234454
– volume: 6
  start-page: 6225
  year: 2015
  ident: oe-28-5-7360-R3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7225
– volume: 8
  start-page: 6469
  year: 2018
  ident: oe-28-5-7360-R27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24731-2
– volume: 18
  start-page: 7138
  year: 2010
  ident: oe-28-5-7360-R18
  publication-title: Opt. Express
  doi: 10.1364/OE.18.007138
– volume: 59
  start-page: 200
  year: 1898
  ident: oe-28-5-7360-R15
  publication-title: Nature
  doi: 10.1038/059200b0
– volume: 13
  start-page: 600
  year: 2004
  ident: oe-28-5-7360-R35
  publication-title: IEEE T. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 26
  start-page: 16547
  year: 2018
  ident: oe-28-5-7360-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.26.016547
– volume: 104
  start-page: 253603
  year: 2010
  ident: oe-28-5-7360-R4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.253603
SSID ssj0014797
Score 2.532596
Snippet Undersampling in Fourier single pixel imaging (FSI) is often employed to reduce imaging time for real-time applications. However, the undersampled...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 7360
Title Deringing and denoising in extremely under-sampled Fourier single pixel imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/32225966
https://www.proquest.com/docview/2384842870
Volume 28
WOSCitedRecordID wos000518435600117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7uquCLeHe8DFF8EJbqTJM06aPoiCDuKKwwbyW3QmHslOnMMuuDv92TNM103RXWB1_CEJK25Hxzci7J-RB6RUplFS-nCafGJtSKLFG5lQklMMEoSbkSnmyCHx-LxSL_Gm6XtJ5OgNe12O3y5r-KGvpA2O7q7D-IOz4UOuA3CB1aEDu0VxL8B19csL97CGplVbXh4gooYhcOXJ559tt10kpXG9g4biVPXOfGLe1RU-3s8qj64QmMhtbrvPFFne2uiQc3fP3rn6dVF12WZp_T6FI6VQRODE1_ltXZdq_5_Lhv23oYfwBn0x3AGoQkp-Agghcatk17SV_Qs6kY4IkNlCYnHaXABW1OMgqrPZ-9IQL8ZbLfsvo0_R87WTxf6NN0GS3ms6KbeoCup5zlTnN_-TWLaSbKO_ad_nND6SmY-ja-9bzB8hcvxFsjJ3fQ7eBG4Hed-O-ia7a-h27647y6vY_mEQQYQIAjCHBV4wgCfA4EOIAAdyDAHgQ4gOAB-v5xdvL-UxKoMxJN0skmYbnWLLVMMaqlFhOrZUqYEQrsXQsuO_wLmVEcWi4NaHVpcmonOjNUu4JxnDxEh_Wqto8RZrLMcrADbSopNUqrfEqmpqS5LW1WUj5Cr_v1KXSoK-_oTZbFBSmM0Ms4tOmKqVw26EW_yAWoOpe_krVdbdsCrEsqfGZ-hB51qx8f4xKGDFz3J1d5xVN0a4_kZ-hws97a5-iGPt1U7XqMDvhCjH1wZuzh8hvbzn_J
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deringing+and+denoising+in+extremely+under-sampled+Fourier+single+pixel+imaging&rft.jtitle=Optics+express&rft.au=Rizvi%2C+Saad&rft.au=Cao%2C+Jie&rft.au=Zhang%2C+Kaiyu&rft.au=Hao%2C+Qun&rft.date=2020-03-02&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=28&rft.issue=5&rft.spage=7360&rft_id=info:doi/10.1364%2FOE.385233&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_385233
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon