Deringing and denoising in extremely under-sampled Fourier single pixel imaging
Undersampling in Fourier single pixel imaging (FSI) is often employed to reduce imaging time for real-time applications. However, the undersampled reconstruction contains ringing artifacts (Gibbs phenomenon) that occur because the high-frequency target information is not recorded. Furthermore, by em...
Uloženo v:
| Vydáno v: | Optics express Ročník 28; číslo 5; s. 7360 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
02.03.2020
|
| ISSN: | 1094-4087, 1094-4087 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Undersampling in Fourier single pixel imaging (FSI) is often employed to reduce imaging time for real-time applications. However, the undersampled reconstruction contains ringing artifacts (Gibbs phenomenon) that occur because the high-frequency target information is not recorded. Furthermore, by employing 3-step FSI strategy (reduced measurements with low noise suppression) with a low-grade sensor (i.e., photodiode), this ringing is coupled with noise to produce unwanted artifacts, lowering image quality. To improve the imaging quality of real-time FSI, a fast image reconstruction framework based on deep convolutional autoencoder network (DCAN) is proposed. The network through context learning over FSI artifacts is capable of deringing, denoising, and recovering details in 256 × 256 images. The promising experimental results show that the proposed deep-learning-based FSI outperforms conventional FSI in terms of image quality even at very low sampling rates (1-4%). |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1094-4087 1094-4087 |
| DOI: | 10.1364/OE.385233 |