Multi video summarization using query based deep optimization algorithm

The popularity of online video-sharing platforms has fuelled demand for systems that can quickly browse, extract, and summarise video information. Nowadays, numerous automatic multi-video summarization (MVS) techniques have come into existence. The existing MVS approach, on the other hand, produces...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of machine learning and cybernetics Ročník 14; číslo 10; s. 3591 - 3606
Hlavní autori: Ansari, Shaharyar Alam, Zafar, Aasim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2023
Springer Nature B.V
Predmet:
ISSN:1868-8071, 1868-808X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The popularity of online video-sharing platforms has fuelled demand for systems that can quickly browse, extract, and summarise video information. Nowadays, numerous automatic multi-video summarization (MVS) techniques have come into existence. The existing MVS approach, on the other hand, produces summarised video with a lot of unimportant and duplicate frames. It also arranges frames in a meaningless manner. To solve these problems in MVS, Query-based Deep African Vulture Learning (QDAVOL) is proposed in this paper. It uses tag information and web images searched by the query as important information to identify the query intent. An event-based object detection and grouping (EODG) technique is used to assign keyframes to groups of specific events relevant with the query. In addition, we introduce the African vulture optimization algorithm (AVOA) for the efficient key frame selection. Moreover, we have also developed a similarity-based frame closeness (SFC) technique to provide more comprehensible summary. Experimental results demonstrate that the proposed framework outperforms existing approaches in terms of precision (0.765), recall (0.845), and average F-score (0.774) on MVS1K dataset.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-023-01852-3