An Ulm-like algorithm for generalized inverse eigenvalue problems

In this paper, we study the numerical solutions of the generalized inverse eigenvalue problem (for short, GIEP). Motivated by Ulm’s method for solving general nonlinear equations and the algorithm of Aishima (J. Comput. Appl. Math. 367 , 112485 2020 ) for the GIEP, we propose here an Ulm-like algori...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 98; číslo 3; s. 1611 - 1641
Hlavní autori: Luo, Yusong, Shen, Weiping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.03.2025
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study the numerical solutions of the generalized inverse eigenvalue problem (for short, GIEP). Motivated by Ulm’s method for solving general nonlinear equations and the algorithm of Aishima (J. Comput. Appl. Math. 367 , 112485 2020 ) for the GIEP, we propose here an Ulm-like algorithm for the GIEP. Compared with other existing methods for the GIEP, the proposed algorithm avoids solving the (approximate) Jacobian equations and so it seems more stable. Assuming that the relative generalized Jacobian matrices at a solution are nonsingular, we prove the quadratic convergence property of the proposed algorithm. Incidentally, we extend the work of Luo et al. (J. Nonlinear Convex Anal. 24 , 2309–2328 2023 ) for the inverse eigenvalue problem (for short, IEP) to the GIEP. Some numerical examples are provided and comparisons with other algorithms are made.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-024-01845-5