Multi-view data clustering via non-negative matrix factorization with manifold regularization

Nowadays, non-negative matrix factorization (NMF) based cluster analysis for multi-view data shows impressive behavior in machine learning. Usually, multi-view data have complementary information from various views. The main concern behind the NMF is how to factorize the data to achieve a significan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of machine learning and cybernetics Ročník 13; číslo 3; s. 677 - 689
Hlavní autoři: Khan, Ghufran Ahmad, Hu, Jie, Li, Tianrui, Diallo, Bassoma, Wang, Hongjun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Témata:
ISSN:1868-8071, 1868-808X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nowadays, non-negative matrix factorization (NMF) based cluster analysis for multi-view data shows impressive behavior in machine learning. Usually, multi-view data have complementary information from various views. The main concern behind the NMF is how to factorize the data to achieve a significant clustering solution from these complementary views. However, NMF does not focus to conserve the geometrical structures of the data space. In this article, we intensify on the above issue and evolve a new NMF clustering method with manifold regularization for multi-view data. The manifold regularization factor is exploited to retain the locally geometrical structure of the data space and gives extensively common clustering solution from multiple views. The weight control term is adopted to handle the distribution of each view weight. An iterative optimization strategy depended on multiplicative update rule is applied on the objective function to achieve optimization. Experimental analysis on the real-world datasets are exhibited that the proposed approach achieves better clustering performance than some state-of-the-art algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-021-01307-7