Edge computing clone node recognition system based on machine learning
Edge computing is an important cornerstone for the construction of 5G networks, but with the development of Internet technology, the computer nodes are extremely vulnerable in attacks, especially clone attacks, causing casualties. The principle of clonal node attack is that the attacker captures the...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 34; číslo 12; s. 9289 - 9300 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.06.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Edge computing is an important cornerstone for the construction of 5G networks, but with the development of Internet technology, the computer nodes are extremely vulnerable in attacks, especially clone attacks, causing casualties. The principle of clonal node attack is that the attacker captures the legitimate nodes in the network and obtains all their legitimate information, copies several nodes with the same ID and key information, and puts these clonal nodes in different locations in the network to attack the edge computing devices, resulting in network paralysis. How to quickly and efficiently identify clone nodes and isolate them becomes the key to prevent clone node attacks and improve the security of edge computing. In order to improve the degree of protection of edge computing and identify clonal nodes more quickly and accurately, based on edge computing of machine learning, this paper uses case analysis method, the literature analysis method, and other methods to collect data from the database, and uses parallel algorithm to build a model of clonal node recognition. The results show that the edge computing based on machine learning can greatly improve the efficiency of clonal node recognition, the recognition speed is more than 30% faster than the traditional edge computing, and the recognition accuracy reaches 0.852, which is about 50% higher than the traditional recognition. The results show that the edge computing clonal node method based on machine learning can improve the detection success rate of clonal nodes and reduce the energy consumption and transmission overhead of nodes, which is of great significance to the detection of clonal nodes. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0941-0643 1433-3058 |
| DOI: | 10.1007/s00521-021-06283-1 |