Investigation of a fixed point problem for Pata-type contractions with respect to w-distance

Pata-type mappings satisfy an uncountably infinite set of inequalities parameterized by an index varying over a closed interval. Fixed point problems involving these mappings have been of considerable interest in recent times. The use of w -distance has made possible several generalizations of fixed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of Analysis Ročník 32; číslo 1; s. 125 - 136
Hlavní autoři: Roy, Subhadip, Chakraborty, Priyam, Ghosh, Sumon, Saha, Parbati, Choudhury, Binayak S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.02.2024
Springer Nature B.V
Témata:
ISSN:0971-3611, 2367-2501
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Pata-type mappings satisfy an uncountably infinite set of inequalities parameterized by an index varying over a closed interval. Fixed point problems involving these mappings have been of considerable interest in recent times. The use of w -distance has made possible several generalizations of fixed point results in metric fixed point theory. Combining the above two contemporary trends of research, we investigate a fixed point problem pertaining to Pata-type mappings by using w -distance. We establish a new existence and uniqueness fixed point result. We cite examples to show that the new result is a proper generalization of the corresponding result in metric spaces and that the theorem applies to some discontinuous functions as well. The problem of well-posedness formulated with respect to w -distance is also investigated. Finally, the fixed point problem obtained herein is applied to integral equations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0971-3611
2367-2501
DOI:10.1007/s41478-023-00612-4