Optimality Conditions for Variational Problems in Incomplete Functional Spaces

This paper develops a novel approach to necessary optimality conditions for constrained variational problems defined in generally incomplete subspaces of absolutely continuous functions. Our approach consists of reducing a variational problem to a (nondynamic) problem of constrained optimization in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 193; číslo 1-3; s. 139 - 157
Hlavní autoři: Mohammadi, Ashkan, Mordukhovich, Boris S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2022
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper develops a novel approach to necessary optimality conditions for constrained variational problems defined in generally incomplete subspaces of absolutely continuous functions. Our approach consists of reducing a variational problem to a (nondynamic) problem of constrained optimization in a normed space and then applying the results recently obtained for the latter class by using generalized differentiation. In this way, we derive necessary optimality conditions for nonconvex problems of the calculus of variations with velocity constraints under the weakest metric subregularity-type constraint qualification. The developed approach leads us to a short and simple proof of first-order necessary optimality conditions for such and related problems in broad spaces of functions including those of class C k as k ≥ 1 .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-021-01964-2