Optimality Conditions for Variational Problems in Incomplete Functional Spaces
This paper develops a novel approach to necessary optimality conditions for constrained variational problems defined in generally incomplete subspaces of absolutely continuous functions. Our approach consists of reducing a variational problem to a (nondynamic) problem of constrained optimization in...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 193; číslo 1-3; s. 139 - 157 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper develops a novel approach to necessary optimality conditions for constrained variational problems defined in generally incomplete subspaces of absolutely continuous functions. Our approach consists of reducing a variational problem to a (nondynamic) problem of constrained optimization in a normed space and then applying the results recently obtained for the latter class by using generalized differentiation. In this way, we derive necessary optimality conditions for nonconvex problems of the calculus of variations with velocity constraints under the weakest metric subregularity-type constraint qualification. The developed approach leads us to a short and simple proof of first-order necessary optimality conditions for such and related problems in broad spaces of functions including those of class
C
k
as
k
≥
1
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-021-01964-2 |