On the Rate of Polynomial Approximations of Holomorphic Functions on Convex Compact Sets

We prove that a holomorphic function on a neighborhood of a compact convex set K ⊂ C n can be uniformly on K approximated by polynomials with an error that decreases exponentially fast with the growth of the polynomial degree. The presented method is based on the vanishing of the top Dolbeault cohom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory Jg. 17; H. 8; S. 129
1. Verfasser: Smirnov, Matvey
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.11.2023
Springer Nature B.V
Schlagworte:
ISSN:1661-8254, 1661-8262
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a holomorphic function on a neighborhood of a compact convex set K ⊂ C n can be uniformly on K approximated by polynomials with an error that decreases exponentially fast with the growth of the polynomial degree. The presented method is based on the vanishing of the top Dolbeault cohomology group of an open subset in C n and an argument involving Čech cohomology. In comparison with the Bernstein-Walsh approach previously applied to the problems of this type the method presented here is much more elementary but it does not provide effective estimates.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-023-01430-z