On the Rate of Polynomial Approximations of Holomorphic Functions on Convex Compact Sets

We prove that a holomorphic function on a neighborhood of a compact convex set K ⊂ C n can be uniformly on K approximated by polynomials with an error that decreases exponentially fast with the growth of the polynomial degree. The presented method is based on the vanishing of the top Dolbeault cohom...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex analysis and operator theory Ročník 17; číslo 8; s. 129
Hlavní autor: Smirnov, Matvey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.11.2023
Springer Nature B.V
Témata:
ISSN:1661-8254, 1661-8262
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove that a holomorphic function on a neighborhood of a compact convex set K ⊂ C n can be uniformly on K approximated by polynomials with an error that decreases exponentially fast with the growth of the polynomial degree. The presented method is based on the vanishing of the top Dolbeault cohomology group of an open subset in C n and an argument involving Čech cohomology. In comparison with the Bernstein-Walsh approach previously applied to the problems of this type the method presented here is much more elementary but it does not provide effective estimates.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-023-01430-z