Space-efficient computation of parallel approximate string matching
Approximate string matching (ASM) has a number of applications in many disciplines, ranging from information retrieval to gene matching. Conventional solution to this problem is based on the dynamic programming-based strategy having quadratic space and time complexity. The complexity of the conventi...
Saved in:
| Published in: | The Journal of supercomputing Vol. 79; no. 8; pp. 9093 - 9126 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.05.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Approximate string matching (ASM) has a number of applications in many disciplines, ranging from information retrieval to gene matching. Conventional solution to this problem is based on the dynamic programming-based strategy having quadratic space and time complexity. The complexity of the conventional solution makes it impractical to search queries from the huge sequences having billions of characters. Therefore, many studies have been proposed that improves on the space and time requirement of the basic solution which includes heuristic, filtration, and index-based solutions. These existing solutions obtain the better performance by compromising on the completeness of the search. In this paper, we proposed the linear space algorithm for the approximate string matching problem while retaining the time complexity of conventional solution. The proposed method works in linear space without omitting any regions in the given text; hence, it finds all the possible matches. Conventional dynamic programming solution is modified in such a way that storage of complete trace back table is avoided by keeping only running count of each edit operation in the memory. A variety of laws and facts are discovered in classical dynamic programming table in that regard. We also presented the parallel approach to the proffered algorithm to improve the running time of the algorithm. The algorithm is evaluated on the CUDA-enabled GPUs. DNA sequences of sizes between 250 and 970 MBP are used for evaluation. Moreover, experiments are also performed by using natural language text to highlight the broader applicability of the proposed algorithm. Results show the substantial superiority of the algorithm in terms of performance and scalability compared to the state-of-the-art algorithms. |
|---|---|
| AbstractList | Approximate string matching (ASM) has a number of applications in many disciplines, ranging from information retrieval to gene matching. Conventional solution to this problem is based on the dynamic programming-based strategy having quadratic space and time complexity. The complexity of the conventional solution makes it impractical to search queries from the huge sequences having billions of characters. Therefore, many studies have been proposed that improves on the space and time requirement of the basic solution which includes heuristic, filtration, and index-based solutions. These existing solutions obtain the better performance by compromising on the completeness of the search. In this paper, we proposed the linear space algorithm for the approximate string matching problem while retaining the time complexity of conventional solution. The proposed method works in linear space without omitting any regions in the given text; hence, it finds all the possible matches. Conventional dynamic programming solution is modified in such a way that storage of complete trace back table is avoided by keeping only running count of each edit operation in the memory. A variety of laws and facts are discovered in classical dynamic programming table in that regard. We also presented the parallel approach to the proffered algorithm to improve the running time of the algorithm. The algorithm is evaluated on the CUDA-enabled GPUs. DNA sequences of sizes between 250 and 970 MBP are used for evaluation. Moreover, experiments are also performed by using natural language text to highlight the broader applicability of the proposed algorithm. Results show the substantial superiority of the algorithm in terms of performance and scalability compared to the state-of-the-art algorithms. Approximate string matching (ASM) has a number of applications in many disciplines, ranging from information retrieval to gene matching. Conventional solution to this problem is based on the dynamic programming-based strategy having quadratic space and time complexity. The complexity of the conventional solution makes it impractical to search queries from the huge sequences having billions of characters. Therefore, many studies have been proposed that improves on the space and time requirement of the basic solution which includes heuristic, filtration, and index-based solutions. These existing solutions obtain the better performance by compromising on the completeness of the search. In this paper, we proposed the linear space algorithm for the approximate string matching problem while retaining the time complexity of conventional solution. The proposed method works in linear space without omitting any regions in the given text; hence, it finds all the possible matches. Conventional dynamic programming solution is modified in such a way that storage of complete trace back table is avoided by keeping only running count of each edit operation in the memory. A variety of laws and facts are discovered in classical dynamic programming table in that regard. We also presented the parallel approach to the proffered algorithm to improve the running time of the algorithm. The algorithm is evaluated on the CUDA-enabled GPUs. DNA sequences of sizes between 250 and 970 MBP are used for evaluation. Moreover, experiments are also performed by using natural language text to highlight the broader applicability of the proposed algorithm. Results show the substantial superiority of the algorithm in terms of performance and scalability compared to the state-of-the-art algorithms. |
| Author | Sadiq, Muhammad Umair Yousaf, Muhammad Murtaza |
| Author_xml | – sequence: 1 givenname: Muhammad Umair surname: Sadiq fullname: Sadiq, Muhammad Umair email: m.umair@gcu.edu.pk organization: Department of Computer Science, Government College University, Faculty of Computing and Information Technology, University of the Punjab – sequence: 2 givenname: Muhammad Murtaza surname: Yousaf fullname: Yousaf, Muhammad Murtaza organization: Department of Software Engineering, Faculty of Computing and Information Technology, University of the Punjab |
| BookMark | eNp9kE1LAzEQhoNUsFX_gKcFz9HJ1yZ7lOIXFDyo55BmE03Z7q5JCvrvTV1B8FBymDm8z2TmWaBZP_QOoQsCVwRAXidCKJUYKMUggClcH6E5EZJh4IrP0BwaClgJTk_QIqUNAHAm2Rwtn0djHXbeBxtcnys7bMddNjkMfTX4ajTRdJ3rKjOOcfgMW5NdlXIM_VtVevtemjN07E2X3PlvPUWvd7cvywe8erp_XN6ssGWkydiDNSAb2VKiFG9pzRQtj7d2bQmRVnLHvBLWU-Bu7fyaNtybEhaOMsJbdooup7llk4-dS1lvhl3sy5eaUVEL1QgpS0pNKRuHlKLz2obpnhxN6DQBvVemJ2W6KNM_ynRdUPoPHWO5OH4dhtgEpXFvxcW_rQ5Q33FwgDg |
| CitedBy_id | crossref_primary_10_1007_s00500_023_08687_8 |
| Cites_doi | 10.1093/bioinformatics/bts505 10.1371/journal.pone.0186251 10.1145/2893488 10.1007/s11227-017-2192-6 10.1016/j.jda.2013.08.004 10.1109/TCBB.2015.2465900 10.1371/journal.pone.0065632 10.1145/316542.316550 10.1109/TCBB.2018.2822687 10.1007/s10586-019-02962-w 10.1016/j.jda.2004.08.006 10.1371/journal.pone.0251047 10.1145/360825.360861 10.1093/bioinformatics/btp324 10.1038/nmeth.2221 10.1109/ICNC.2012.43 10.1109/IPDPSW.2012.298 10.1016/j.ic.2010.04.001 10.1093/bioinformatics/btw753 10.1186/s12859-015-0626-9 10.1109/TPDS.2016.2645222 10.1109/NAS.2013.40 10.1109/AVSS.2017.8078538 10.1186/gb-2009-10-3-r25 10.1016/0196-6774(80)90016-4 10.1093/comjnl/bxaa193 10.1007/BF01188584 10.1038/nmeth0810-576 10.1186/s12859-016-1320-2 10.1109/ICDE.2016.7498238 10.1145/266714.266721 10.1142/S0129183116500297 10.1145/135239.135244 10.1016/0196-6774(85)90023-9 10.1016/0022-0000(88)90045-1 10.1145/2640087.2644170 10.1109/TKDE.2007.250581 10.1109/FOCS.2009.11 10.1007/s11042-020-08913-7 10.1145/375360.375365 10.1137/0219067 10.1145/321796.321811 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11227-022-05038-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 9126 |
| ExternalDocumentID | 10_1007_s11227_022_05038_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-f0ca0797d21884d263828284dcbc117c74e3f85cf204ebefb294fa2185e2314d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910799300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sun Nov 30 05:04:57 EST 2025 Sat Nov 29 04:27:44 EST 2025 Tue Nov 18 22:42:42 EST 2025 Fri Feb 21 02:43:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Performance evaluation Parallel algorithm Dynamic programming Approximate string matching OpenMP GPUs |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-f0ca0797d21884d263828284dcbc117c74e3f85cf204ebefb294fa2185e2314d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256589577 |
| PQPubID | 2043774 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_3256589577 crossref_citationtrail_10_1007_s11227_022_05038_6 crossref_primary_10_1007_s11227_022_05038_6 springer_journals_10_1007_s11227_022_05038_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20230500 2023-05-00 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Liu Y, Guo L, Li J, Ren M, Li K (2012) Parallel algorithms for approximate string matching with k mismatches on CUDA. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IEEE, pp 2414–2422 SellersPHThe theory and computation of evolutionary distances: pattern recognitionJ Algorithms19801435937360487010.1016/0196-6774(80)90016-40454.68110 LangmeadBTrapnellCPopMSalzbergSLUltrafast and memory-efficient alignment of short DNA sequences to the human genomeGenome Biol200910311010.1186/gb-2009-10-3-r25 LipskyOPoratBPoratEShalomBRTzurAString matching with up to k swaps and mismatchesInf Comput2010208910201030268083410.1016/j.ic.2010.04.0011209.68466 French JC, Powell AL, Schulman E (1997) Applications of approximate word matching in information retrieval. In: CIKM, vol 97, Citeseer, pp 9–15 AhmedPIslamASRahmanMSA graph-theoretic model to solve the approximate string matching problem allowing for translocationsJ Discrete Algorithms201323143156313288710.1016/j.jda.2013.08.0041334.68309 PevznerPAWatermanMSMultiple filtration and approximate pattern matchingAlgorithmica1995131135154130431210.1007/BF011885840831.92015 ElmagarmidAKIpeirotisPGVerykiosVSDuplicate record detection: a surveyIEEE Trans Knowl Data Eng200619111610.1109/TKDE.2007.250581 ŠošićMŠikićMEdlib: a c/c++ library for fast, exact sequence alignment using edit distanceBioinformatics20173391394139510.1093/bioinformatics/btw753 National Center for Biotechnology Information (NCBI). ftp://ftp.ncbi.nlm.nih.gov/ (2022) Kim J, Li C, Xie X (2016) Hobbes3: dynamic generation of variable-length signatures for efficient approximate subsequence mappings. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), IEEE, pp 169–180 HyyröHBit-parallel approximate string matching algorithms with transpositionJ Discrete Algorithms200532–4215229216859410.1016/j.jda.2004.08.0061101.68504 LiHDurbinRFast and accurate short read alignment with Burrows–Wheeler transformBioinformatics200925141754176010.1093/bioinformatics/btp324 TranNHChenXAmas: optimizing the partition and filtration of adaptive seeds to speed up read mappingIEEE/ACM Trans Comput Biol Bioinf201513462363310.1109/TCBB.2015.2465900 Porat B, Porat E (2009) Exact and approximate pattern matching in the streaming model. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, IEEE, pp 315–323 IbrahimOASHamedBAEl-HafeezTAA new fast technique for pattern matching in biological sequencesJ Supercomput20222022122 SadiqMUYousafMMAslamLAleemMSarwarSJaffrySWNvpd: novel parallel edit distance algorithm, correctness, and performance evaluationCluster Comput201910.1007/s10586-019-02962-w KimHA k-mismatch string matching for generalized edit distance using diagonal skipping methodPLoS ONE2021165025104710.1371/journal.pone.0251047 Faro S, Lecroq T, Borzì S, Mauro SD, Maggio A (2016) The string matching algorithms research tool. In: Holub J, Žďárek J (eds) Proceedings of the Prague Stringology Conference 2016, Czech Technical University in Prague, Czech Republic, pp 99–111 Susik R (2017) Applying a q-gram based multiple string matching algorithm for approximate matching. In: Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 7 GalilZParkKAn improved algorithm for approximate string matchingSIAM J Comput1990196989999106909310.1137/02190670711.68048 Nakano K (2012) Efficient implementations of the approximate string matching on the memory machine models. In: 2012 Third International Conference on Networking and Computing, IEEE, pp 233–239 Saccharomyces Genome Database. http://downloads.yeastgenome.org/sequence/S288C_reference/orf_dna (2022) MitaniYInoFHagiharaKParallelizing exact and approximate string matching via inclusive scan on a GPUIEEE Trans Parallel Distrib Syst20162871989200210.1109/TPDS.2016.2645222 AlbaAMendezMORubio-RinconMEArce-SantanaERA consensus algorithm for approximate string matching and its application to QRS complex detectionInt J Mod Phys C201627031650029346359510.1142/S0129183116500297 Guo L, Du S, Ren M, Liu Y, Li J, He J, Tian N, Li K (2013) Parallel algorithm for approximate string matching with k differences. In: 2013 IEEE Eighth International Conference on Networking, Architecture and Storage, Washington, DC, USA, IEEE, pp 257–261 WuSManberUFast text searching: allowing errorsCommun ACM19923510839110.1145/135239.135244 SandesEFDOBoukercheAMeloACMADParallel optimal pairwise biological sequence comparison: algorithms, platforms, and classificationACM Comput Surv (CSUR)20164846310.1145/2893488 Jupin J, Shi JY (2014) Identity tracking in big data: preliminary research using in-memory data graph models for record linkage and probabilistic signature hashing for approximate string matching in big health and human services databases. In: Proceedings of the 2014 International Conference on Big Data Science and Computing, ACM, p 20 ChengHZhangYXuYBitmapper2: a GPU-accelerated all-mapper based on the sparse q-gram indexIEEE/ACM Trans Comput Biol Bioinf2018163886897122992710.1109/TCBB.2018.2822687 Watcharapinchai N, Rujikietgumjorn S (2017) Approximate license plate string matching for vehicle re-identification. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), IEEE, pp 1–6 ChengHJiangHYangJXuYShangYBitmapper: an efficient all-mapper based on bit-vector computingBMC Bioinform201516111610.1186/s12859-015-0626-9 FioriFJPakalénWTarhioJApproximate string matching with SIMDComput J202265614721488444066210.1093/comjnl/bxaa193 HirschbergDSA linear space algorithm for computing maximal common subsequencesCommun ACM197518634134337582910.1145/360825.3608610301.68042 UkkonenEFinding approximate patterns in stringsJ Algorithms19856113213778085510.1016/0196-6774(85)90023-90566.68072 AlonsoDGTeyseyreASoriaABerdunLHand gesture recognition in real world scenarios using approximate string matchingMultimed Tools Appl20207929207732079410.1007/s11042-020-08913-7 HachFHormozdiariFAlkanCHormozdiariFBirolIEichlerEESahinalpSCmrsfast: a cache-oblivious algorithm for short-read mappingNat Methods20107857657710.1038/nmeth0810-576 HoTOhS-RKimHNew algorithms for fixed-length approximate string matching and approximate circular string matching under the hamming distanceJ Supercomput20187451815183410.1007/s11227-017-2192-6 AyadLAPissisSPRethaAlibflasm: a software library for fixed-length approximate string matchingBMC Bioinform201617111210.1186/s12859-016-1320-2 LandauGMVishkinUFast string matching with k differencesJ Comput Syst Sci1988371637897365710.1016/0022-0000(88)90045-10655.68075 Marco-SolaSSammethMGuigóRRibecaPThe gem mapper: fast, accurate and versatile alignment by filtrationNat Methods20129121185118810.1038/nmeth.2221 NavarroGA guided tour to approximate string matchingACM Comput Surv (CSUR)2001331318810.1145/375360.375365 WagnerRAFischerMJThe string-to-string correction problemJ ACM (JACM)197421116817335657610.1145/321796.3218110278.68032 FredrikssonKNavarroGAverage-optimal single and multiple approximate string matchingJ Exp Algorithmics (JEA)200491421168941085.68735 LuoRWongTZhuJLiuC-MZhuXWuELeeL-KLinHZhuWCheungDWSoap3-DP: fast, accurate and sensitive GPU-based short read alignerPLoS ONE2013856563210.1371/journal.pone.0065632 HasanSSAhmedFKhanRSApproximate string matching algorithms: a brief survey and comparisonInt J Comput Appl201512081 HoTOhS-RKimHA parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operationsPLoS ONE20171210018625110.1371/journal.pone.0186251 MyersGA fast bit-vector algorithm for approximate string matching based on dynamic programmingJ ACM (JACM)1999463395415181573910.1145/316542.3165501065.68663 WeeseDHoltgreweMReinertKRazers 3: faster, fully sensitive read mappingBioinformatics201228202592259910.1093/bioinformatics/bts505 O Lipsky (5038_CR36) 2010; 208 SS Hasan (5038_CR8) 2015; 120 5038_CR33 5038_CR34 FJ Fiori (5038_CR14) 2022; 65 K Fredriksson (5038_CR23) 2004; 9 A Alba (5038_CR7) 2016; 27 Y Mitani (5038_CR15) 2016; 28 H Li (5038_CR20) 2009; 25 PA Pevzner (5038_CR16) 1995; 13 LA Ayad (5038_CR49) 2016; 17 H Kim (5038_CR38) 2021; 16 D Weese (5038_CR12) 2012; 28 5038_CR37 GM Landau (5038_CR29) 1988; 37 P Ahmed (5038_CR35) 2013; 23 5038_CR39 PH Sellers (5038_CR9) 1980; 1 B Langmead (5038_CR19) 2009; 10 OAS Ibrahim (5038_CR28) 2022; 2022 M Šošić (5038_CR32) 2017; 33 DG Alonso (5038_CR6) 2020; 79 G Myers (5038_CR11) 1999; 46 T Ho (5038_CR40) 2017; 12 5038_CR1 EFDO Sandes (5038_CR3) 2016; 48 5038_CR2 5038_CR5 H Cheng (5038_CR21) 2018; 16 5038_CR26 S Marco-Sola (5038_CR18) 2012; 9 H Cheng (5038_CR13) 2015; 16 DS Hirschberg (5038_CR42) 1975; 18 E Ukkonen (5038_CR25) 1985; 6 AK Elmagarmid (5038_CR4) 2006; 19 R Luo (5038_CR45) 2013; 8 F Hach (5038_CR44) 2010; 7 T Ho (5038_CR27) 2018; 74 RA Wagner (5038_CR46) 1974; 21 S Wu (5038_CR31) 1992; 35 5038_CR17 5038_CR43 NH Tran (5038_CR22) 2015; 13 MU Sadiq (5038_CR41) 2019 5038_CR48 G Navarro (5038_CR24) 2001; 33 Z Galil (5038_CR30) 1990; 19 5038_CR47 H Hyyrö (5038_CR10) 2005; 3 |
| References_xml | – reference: Marco-SolaSSammethMGuigóRRibecaPThe gem mapper: fast, accurate and versatile alignment by filtrationNat Methods20129121185118810.1038/nmeth.2221 – reference: LangmeadBTrapnellCPopMSalzbergSLUltrafast and memory-efficient alignment of short DNA sequences to the human genomeGenome Biol200910311010.1186/gb-2009-10-3-r25 – reference: AhmedPIslamASRahmanMSA graph-theoretic model to solve the approximate string matching problem allowing for translocationsJ Discrete Algorithms201323143156313288710.1016/j.jda.2013.08.0041334.68309 – reference: Jupin J, Shi JY (2014) Identity tracking in big data: preliminary research using in-memory data graph models for record linkage and probabilistic signature hashing for approximate string matching in big health and human services databases. In: Proceedings of the 2014 International Conference on Big Data Science and Computing, ACM, p 20 – reference: AlonsoDGTeyseyreASoriaABerdunLHand gesture recognition in real world scenarios using approximate string matchingMultimed Tools Appl20207929207732079410.1007/s11042-020-08913-7 – reference: WeeseDHoltgreweMReinertKRazers 3: faster, fully sensitive read mappingBioinformatics201228202592259910.1093/bioinformatics/bts505 – reference: AyadLAPissisSPRethaAlibflasm: a software library for fixed-length approximate string matchingBMC Bioinform201617111210.1186/s12859-016-1320-2 – reference: French JC, Powell AL, Schulman E (1997) Applications of approximate word matching in information retrieval. In: CIKM, vol 97, Citeseer, pp 9–15 – reference: HyyröHBit-parallel approximate string matching algorithms with transpositionJ Discrete Algorithms200532–4215229216859410.1016/j.jda.2004.08.0061101.68504 – reference: National Center for Biotechnology Information (NCBI). ftp://ftp.ncbi.nlm.nih.gov/ (2022) – reference: Guo L, Du S, Ren M, Liu Y, Li J, He J, Tian N, Li K (2013) Parallel algorithm for approximate string matching with k differences. In: 2013 IEEE Eighth International Conference on Networking, Architecture and Storage, Washington, DC, USA, IEEE, pp 257–261 – reference: FioriFJPakalénWTarhioJApproximate string matching with SIMDComput J202265614721488444066210.1093/comjnl/bxaa193 – reference: Porat B, Porat E (2009) Exact and approximate pattern matching in the streaming model. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, IEEE, pp 315–323 – reference: HasanSSAhmedFKhanRSApproximate string matching algorithms: a brief survey and comparisonInt J Comput Appl201512081 – reference: LiHDurbinRFast and accurate short read alignment with Burrows–Wheeler transformBioinformatics200925141754176010.1093/bioinformatics/btp324 – reference: Liu Y, Guo L, Li J, Ren M, Li K (2012) Parallel algorithms for approximate string matching with k mismatches on CUDA. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IEEE, pp 2414–2422 – reference: NavarroGA guided tour to approximate string matchingACM Comput Surv (CSUR)2001331318810.1145/375360.375365 – reference: LipskyOPoratBPoratEShalomBRTzurAString matching with up to k swaps and mismatchesInf Comput2010208910201030268083410.1016/j.ic.2010.04.0011209.68466 – reference: SadiqMUYousafMMAslamLAleemMSarwarSJaffrySWNvpd: novel parallel edit distance algorithm, correctness, and performance evaluationCluster Comput201910.1007/s10586-019-02962-w – reference: SandesEFDOBoukercheAMeloACMADParallel optimal pairwise biological sequence comparison: algorithms, platforms, and classificationACM Comput Surv (CSUR)20164846310.1145/2893488 – reference: FredrikssonKNavarroGAverage-optimal single and multiple approximate string matchingJ Exp Algorithmics (JEA)200491421168941085.68735 – reference: GalilZParkKAn improved algorithm for approximate string matchingSIAM J Comput1990196989999106909310.1137/02190670711.68048 – reference: UkkonenEFinding approximate patterns in stringsJ Algorithms19856113213778085510.1016/0196-6774(85)90023-90566.68072 – reference: Faro S, Lecroq T, Borzì S, Mauro SD, Maggio A (2016) The string matching algorithms research tool. In: Holub J, Žďárek J (eds) Proceedings of the Prague Stringology Conference 2016, Czech Technical University in Prague, Czech Republic, pp 99–111 – reference: WuSManberUFast text searching: allowing errorsCommun ACM19923510839110.1145/135239.135244 – reference: LandauGMVishkinUFast string matching with k differencesJ Comput Syst Sci1988371637897365710.1016/0022-0000(88)90045-10655.68075 – reference: ChengHZhangYXuYBitmapper2: a GPU-accelerated all-mapper based on the sparse q-gram indexIEEE/ACM Trans Comput Biol Bioinf2018163886897122992710.1109/TCBB.2018.2822687 – reference: Nakano K (2012) Efficient implementations of the approximate string matching on the memory machine models. In: 2012 Third International Conference on Networking and Computing, IEEE, pp 233–239 – reference: HachFHormozdiariFAlkanCHormozdiariFBirolIEichlerEESahinalpSCmrsfast: a cache-oblivious algorithm for short-read mappingNat Methods20107857657710.1038/nmeth0810-576 – reference: HoTOhS-RKimHNew algorithms for fixed-length approximate string matching and approximate circular string matching under the hamming distanceJ Supercomput20187451815183410.1007/s11227-017-2192-6 – reference: KimHA k-mismatch string matching for generalized edit distance using diagonal skipping methodPLoS ONE2021165025104710.1371/journal.pone.0251047 – reference: TranNHChenXAmas: optimizing the partition and filtration of adaptive seeds to speed up read mappingIEEE/ACM Trans Comput Biol Bioinf201513462363310.1109/TCBB.2015.2465900 – reference: Watcharapinchai N, Rujikietgumjorn S (2017) Approximate license plate string matching for vehicle re-identification. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), IEEE, pp 1–6 – reference: ŠošićMŠikićMEdlib: a c/c++ library for fast, exact sequence alignment using edit distanceBioinformatics20173391394139510.1093/bioinformatics/btw753 – reference: Susik R (2017) Applying a q-gram based multiple string matching algorithm for approximate matching. In: Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 7 – reference: PevznerPAWatermanMSMultiple filtration and approximate pattern matchingAlgorithmica1995131135154130431210.1007/BF011885840831.92015 – reference: AlbaAMendezMORubio-RinconMEArce-SantanaERA consensus algorithm for approximate string matching and its application to QRS complex detectionInt J Mod Phys C201627031650029346359510.1142/S0129183116500297 – reference: IbrahimOASHamedBAEl-HafeezTAA new fast technique for pattern matching in biological sequencesJ Supercomput20222022122 – reference: ElmagarmidAKIpeirotisPGVerykiosVSDuplicate record detection: a surveyIEEE Trans Knowl Data Eng200619111610.1109/TKDE.2007.250581 – reference: HoTOhS-RKimHA parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operationsPLoS ONE20171210018625110.1371/journal.pone.0186251 – reference: LuoRWongTZhuJLiuC-MZhuXWuELeeL-KLinHZhuWCheungDWSoap3-DP: fast, accurate and sensitive GPU-based short read alignerPLoS ONE2013856563210.1371/journal.pone.0065632 – reference: HirschbergDSA linear space algorithm for computing maximal common subsequencesCommun ACM197518634134337582910.1145/360825.3608610301.68042 – reference: SellersPHThe theory and computation of evolutionary distances: pattern recognitionJ Algorithms19801435937360487010.1016/0196-6774(80)90016-40454.68110 – reference: Kim J, Li C, Xie X (2016) Hobbes3: dynamic generation of variable-length signatures for efficient approximate subsequence mappings. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), IEEE, pp 169–180 – reference: MyersGA fast bit-vector algorithm for approximate string matching based on dynamic programmingJ ACM (JACM)1999463395415181573910.1145/316542.3165501065.68663 – reference: ChengHJiangHYangJXuYShangYBitmapper: an efficient all-mapper based on bit-vector computingBMC Bioinform201516111610.1186/s12859-015-0626-9 – reference: WagnerRAFischerMJThe string-to-string correction problemJ ACM (JACM)197421116817335657610.1145/321796.3218110278.68032 – reference: Saccharomyces Genome Database. http://downloads.yeastgenome.org/sequence/S288C_reference/orf_dna (2022) – reference: MitaniYInoFHagiharaKParallelizing exact and approximate string matching via inclusive scan on a GPUIEEE Trans Parallel Distrib Syst20162871989200210.1109/TPDS.2016.2645222 – volume: 28 start-page: 2592 issue: 20 year: 2012 ident: 5038_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts505 – volume: 12 start-page: 0186251 issue: 10 year: 2017 ident: 5038_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0186251 – volume: 48 start-page: 63 issue: 4 year: 2016 ident: 5038_CR3 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/2893488 – volume: 74 start-page: 1815 issue: 5 year: 2018 ident: 5038_CR27 publication-title: J Supercomput doi: 10.1007/s11227-017-2192-6 – volume: 23 start-page: 143 year: 2013 ident: 5038_CR35 publication-title: J Discrete Algorithms doi: 10.1016/j.jda.2013.08.004 – volume: 13 start-page: 623 issue: 4 year: 2015 ident: 5038_CR22 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2015.2465900 – volume: 8 start-page: 65632 issue: 5 year: 2013 ident: 5038_CR45 publication-title: PLoS ONE doi: 10.1371/journal.pone.0065632 – ident: 5038_CR48 – volume: 46 start-page: 395 issue: 3 year: 1999 ident: 5038_CR11 publication-title: J ACM (JACM) doi: 10.1145/316542.316550 – volume: 16 start-page: 886 issue: 3 year: 2018 ident: 5038_CR21 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2018.2822687 – year: 2019 ident: 5038_CR41 publication-title: Cluster Comput doi: 10.1007/s10586-019-02962-w – volume: 120 start-page: 1 issue: 8 year: 2015 ident: 5038_CR8 publication-title: Int J Comput Appl – volume: 3 start-page: 215 issue: 2–4 year: 2005 ident: 5038_CR10 publication-title: J Discrete Algorithms doi: 10.1016/j.jda.2004.08.006 – volume: 16 start-page: 0251047 issue: 5 year: 2021 ident: 5038_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0251047 – volume: 18 start-page: 341 issue: 6 year: 1975 ident: 5038_CR42 publication-title: Commun ACM doi: 10.1145/360825.360861 – volume: 25 start-page: 1754 issue: 14 year: 2009 ident: 5038_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 9 start-page: 1185 issue: 12 year: 2012 ident: 5038_CR18 publication-title: Nat Methods doi: 10.1038/nmeth.2221 – ident: 5038_CR39 doi: 10.1109/ICNC.2012.43 – ident: 5038_CR34 doi: 10.1109/IPDPSW.2012.298 – volume: 208 start-page: 1020 issue: 9 year: 2010 ident: 5038_CR36 publication-title: Inf Comput doi: 10.1016/j.ic.2010.04.001 – volume: 33 start-page: 1394 issue: 9 year: 2017 ident: 5038_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw753 – volume: 16 start-page: 1 issue: 1 year: 2015 ident: 5038_CR13 publication-title: BMC Bioinform doi: 10.1186/s12859-015-0626-9 – volume: 28 start-page: 1989 issue: 7 year: 2016 ident: 5038_CR15 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2016.2645222 – ident: 5038_CR26 doi: 10.1109/NAS.2013.40 – ident: 5038_CR5 doi: 10.1109/AVSS.2017.8078538 – volume: 10 start-page: 1 issue: 3 year: 2009 ident: 5038_CR19 publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 9 start-page: 1 year: 2004 ident: 5038_CR23 publication-title: J Exp Algorithmics (JEA) – volume: 1 start-page: 359 issue: 4 year: 1980 ident: 5038_CR9 publication-title: J Algorithms doi: 10.1016/0196-6774(80)90016-4 – volume: 65 start-page: 1472 issue: 6 year: 2022 ident: 5038_CR14 publication-title: Comput J doi: 10.1093/comjnl/bxaa193 – volume: 13 start-page: 135 issue: 1 year: 1995 ident: 5038_CR16 publication-title: Algorithmica doi: 10.1007/BF01188584 – volume: 7 start-page: 576 issue: 8 year: 2010 ident: 5038_CR44 publication-title: Nat Methods doi: 10.1038/nmeth0810-576 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 5038_CR49 publication-title: BMC Bioinform doi: 10.1186/s12859-016-1320-2 – ident: 5038_CR17 doi: 10.1109/ICDE.2016.7498238 – ident: 5038_CR1 doi: 10.1145/266714.266721 – volume: 27 start-page: 1650029 issue: 03 year: 2016 ident: 5038_CR7 publication-title: Int J Mod Phys C doi: 10.1142/S0129183116500297 – volume: 35 start-page: 83 issue: 10 year: 1992 ident: 5038_CR31 publication-title: Commun ACM doi: 10.1145/135239.135244 – volume: 6 start-page: 132 issue: 1 year: 1985 ident: 5038_CR25 publication-title: J Algorithms doi: 10.1016/0196-6774(85)90023-9 – ident: 5038_CR37 – volume: 37 start-page: 63 issue: 1 year: 1988 ident: 5038_CR29 publication-title: J Comput Syst Sci doi: 10.1016/0022-0000(88)90045-1 – ident: 5038_CR2 doi: 10.1145/2640087.2644170 – volume: 19 start-page: 1 issue: 1 year: 2006 ident: 5038_CR4 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.250581 – volume: 2022 start-page: 1 year: 2022 ident: 5038_CR28 publication-title: J Supercomput – ident: 5038_CR43 – ident: 5038_CR33 doi: 10.1109/FOCS.2009.11 – ident: 5038_CR47 – volume: 79 start-page: 20773 issue: 29 year: 2020 ident: 5038_CR6 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-08913-7 – volume: 33 start-page: 31 issue: 1 year: 2001 ident: 5038_CR24 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/375360.375365 – volume: 19 start-page: 989 issue: 6 year: 1990 ident: 5038_CR30 publication-title: SIAM J Comput doi: 10.1137/0219067 – volume: 21 start-page: 168 issue: 1 year: 1974 ident: 5038_CR46 publication-title: J ACM (JACM) doi: 10.1145/321796.321811 |
| SSID | ssj0004373 |
| Score | 2.3204434 |
| Snippet | Approximate string matching (ASM) has a number of applications in many disciplines, ranging from information retrieval to gene matching. Conventional solution... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9093 |
| SubjectTerms | Algorithms Approximate string matching Compilers Complexity Computer Science Dynamic programming Gene sequencing Information retrieval Interpreters Processor Architectures Programming Languages Run time (computers) |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL8xPnF3nwTQNtmjTtowyHT0OYyt5Km1xkUDrZpvjnm6StRVFB3wK5hnCX691xd78DuBAi4oWOOBWmiClHltOiMDE1KBDj2CQ5Gj9sQo7HyXSa3jVNYcu22r1NSfo_ddfsFjImqas-9xgmNF6HDeHQZlyMPnnsuiGjOq-c2sAoEZw1rTLfn_HZHHU-5pe0qLc2o_7_7rkD2413Sa7r57ALa1jtQb-d3EAaRd6H4cSGykjR40dYs0OUJ_FSInNDHCB4WWJJPOT428y6tUjchI_qidi1r788gIfRzf3wljbjFKiyeraiJlB5IFOprVVPuGZW81y8xbUqVBhKJTlGJhHKsIBb0ZqCpdzklligdQK5jg6hV80rPALCIokuuA1iXfAAg8RGWS4DiDoPAx2LAYQtVzPVYI27kRdl1qEkOy5llkuZ51IWD-Dy45vnGmnjV-rTVlhZo3XLLLL-m7B3kXIAV61wuu2fTzv-G_kJbLmp83Xd4yn0VosXPINN9bqaLRfn_jW-A0Eb18Y priority: 102 providerName: Springer Nature |
| Title | Space-efficient computation of parallel approximate string matching |
| URI | https://link.springer.com/article/10.1007/s11227-022-05038-6 https://www.proquest.com/docview/3256589577 |
| Volume | 79 |
| WOSCitedRecordID | wos000910799300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOnDhUYpYCisfemst8vAjOVUFgSpVWq3YtkK9RIk9rpBWu8AuiJ_P2HEagQQXLlakOFaSz-OZ8Yy_AfgsZS4amwsuXaO4wKzmTeMUdygRlXJFjS4Um9CjUXF1VY7jhtsiplV2a2JYqO3c-D3yk5x0syxKqfW3m1vuq0b56GosobEK656pjOb5-un5aHzZn4zM2xhzSU5SIUUWj820h-fSLNPcZ7MHThSunqum3t58ESINmudi-73vvANb0eZk39tJsgsrOPsA2109BxbFew_OJuRAI8fAKkHKiJnQJWDH5o55mvDpFKcsEJE_XpOxi8zX_Zj9Y3QdsjI_wu-L819nP3gsssANSd-Su8TUiS61JV1fCJuRPHovTFjTmDTVRgvMXSGNyxJBgLsmK4WrqbNEMg2FzfdhbTaf4QGwLNfoXd5E2UYkmNCXKx8XRFuniVVyAGn3fysTGch9IYxp1XMne0wqwqQKmFRqAF_-P3PT8m-82fuoA6KKsrioehQG8LWDsr_9-miHb4_2CTZ97fk2-_EI1pZ393gMG-Zheb24G8aZOITVn5oPfUrphNqx_Evt5eTPEwGN5zg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH9BMNEL4AdhEXEOetKJ7XQ-2gMhBiGQxY2JmHCr7cwbQrLZXdkF9Z_yb_TNtLXRBG4cuDXpdJKZ93tffV8Ar5XKZO0yyZWvNZcoKl7XXnOPClFrn1fo47AJMxrlZ2fF5yX43dXChLTKTiZGQe2mNvwjf5-RblZ5oYzZm33nYWpUiK52IzQaWAzx1w9y2ea7xx-Jvm-EODw43T_i7VQBbgluC-4TWyWmMI6UWy6dIAAGt0M6W9s0NdZIzHyurBeJpBP6WhTSV7RYIdlC0mW07wNYkVmuA0cNDe_rMLMmol2QS5YrKdoinaZULxXC8JA7HzuwcP2vIuyt2_8CslHPHa7dtxtah9XWomYfGhZ4Aks4eQpr3bQK1gqvZ7D_ZVZZ5Bh7ZpCqZTYuichkU89CE_TxGMcstln_eUGmPLIw1WRyzug55pw-h693cpQNWJ5MJ7gJTGQGg0OfaFfLBBO6aR2inuiqNHFaDSDt6Fnatr96GPMxLvvO0AEDJWGgjBgo9QDe_v1m1nQXuXX1dkf4spU087Kn-gDeddDpX9-829btu72CR0enn07Kk-PR8AU8FmTbNXme27C8uLzCl_DQXi8u5pc7kQcYfLtrSP0B4h095g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8QwDA96ivjit3h-9sE3Le6jXbdHOT0U5Tj8wrextakIY4p3in--bbc5FRXEt8HSUJKGJCT5BWCX85DlKmSU6zyiDIOM5rmOqEaOGEU6zlC7ZRNiMIhvb5Phhyl-1-3elCSrmQaL0lSODx6VPmgH3_wgENR2ojs8ExpNwhQzmYxt6rq4vGknI8OqxpyYJCnmLKjHZr7n8dk1tfHmlxKp8zz9-f_feQHm6qiTHFbPZBEmsFyC-WajA6kNfBl6lyaFRooOV8KwJtKROO2RB00sUHhRYEEcFPnrvQl3kdjNH-UdMd-uL3MFrvvHV70TWq9ZoNLY35hqT2aeSIQy3j5mKjAWafMwpmQufV9IwTDUMZc68JhRuc6DhOnMEHM0wSFT4Sp0yocS14AEoUCb9HqRypmHXmyyL1sZRJX5nop4F_xGwqmsMcjtKowibdGTrZRSI6XUSSmNurD3fuaxQuD4lXqzUVxaW-MoDU1cx81dhOjCfqOo9vfP3Nb_Rr4DM8Ojfnp-OjjbgFm7mL5qjdyEzvjpGbdgWr6M70dP2-6RvgF10OOO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-efficient+computation+of+parallel+approximate+string+matching&rft.jtitle=The+Journal+of+supercomputing&rft.au=Sadiq%2C+Muhammad+Umair&rft.au=Yousaf%2C+Muhammad+Murtaza&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=79&rft.issue=8&rft.spage=9093&rft.epage=9126&rft_id=info:doi/10.1007%2Fs11227-022-05038-6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |