A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-driven Dynamic Optimization
Existing work on offline data-driven optimization mainly focuses on problems in static environments, and little attention has been paid to problems in dynamic environments. Offline data-driven optimization in dynamic environments is a challenging problem because the distribution of collected data va...
Uloženo v:
| Vydáno v: | Evolutionary computation Ročník 31; číslo 4; s. 1 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.12.2023
|
| Témata: | |
| ISSN: | 1530-9304, 1530-9304 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Existing work on offline data-driven optimization mainly focuses on problems in static environments, and little attention has been paid to problems in dynamic environments. Offline data-driven optimization in dynamic environments is a challenging problem because the distribution of collected data varies over time, requiring surrogate models and optimal solutions tracking with time. To this end, this paper proposes a knowledge transfer-based data-driven optimization algorithm to address the above issues. First, an ensemble learning method is adopted to train surrogate models to leverage the knowledge of data in historical environments as well as adapt to new environments. Specifically, given data in a new environment, a model is constructed with the new data, and the preserved models of historical environments are further trained with the new data. Then, these models are considered to be base learners and combined as an ensemble surrogate model. After that, all base learners and the ensemble surrogate model are simultaneously optimized in a multi-task environment for finding optimal solutions for real fitness functions. In this way, the optimization tasks in the previous environments can be used to accelerate the tracking of the optimum in the current environment. Since the ensemble model is the most accurate surrogate, we assign more individuals to the ensemble surrogate than its base learners. Empirical results on six dynamic optimization benchmark problems demonstrate the effectiveness of the proposed algorithm compared with four state-of-the-art offline data-driven optimization algorithms. Code is available at https://github.com/Peacefulyang/DSE_MFS.git. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1530-9304 1530-9304 |
| DOI: | 10.1162/evco_a_00332 |