A hybrid semantic recommender system based on an improved clustering

A recommender system is a model that automatically recommends some meaningful cases (such as clips/films/goods/items) to the clients/people/consumers/users according to their (previous) interests. These systems are expected to recommend the items according to the users’ interests. There are two trad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 80; H. 9; S. 13341 - 13385
Hauptverfasser: Bahrani, Payam, Minaei-Bidgoli, Behrouz, Parvin, Hamid, Mirzarezaee, Mitra, Keshavarz, Ahmad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2024
Springer Nature B.V
Schlagworte:
ISSN:0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A recommender system is a model that automatically recommends some meaningful cases (such as clips/films/goods/items) to the clients/people/consumers/users according to their (previous) interests. These systems are expected to recommend the items according to the users’ interests. There are two traditional general recommender system models, i.e., Collaborative Filtering Recommender System (ColFRS) and Content-based Filtering Recommender System (ConFRS). Also, there is another model that is a hybrid of those two traditional recommender systems; it is called Hybrid Recommender System (HRS). An HRS usually outperforms simple traditional recommender systems. The problems such as scalability, cold start, and sparsity belong to the main problems that any recommender system should solve. The memory-based (modeless) recommender systems benefit from good accuracies. But they suffer from a lack of admissible scalability. The model-based recommender systems suffer from a lack of admissible accuracies. But they benefit from good scalability. In this paper, it is tried to propose a hybrid model based on an automatically improved ontology to solve the scalability, cold start, and sparsity problems. Our proposed HRS also uses an innovative approach of clustering as an augmented section. When there are enough ratings, it uses a collaborative filtering approach to predict the missing ratings. When there are not enough ratings, it uses a content-based filtering approach to predict the missing ratings. In the content-based filtering section of our proposed HRS, ontology concepts are used to improve the accuracy of ratings’ prediction. If our target client is severely sparse, we cannot trust even the ratings predicted by the content-based filtering section of our proposed HRS. Therefore, our proposed HRS uses additive clustering to improve the prediction of the missing ratings if the target client is severely sparse. It is experimentally shown that our model outperforms many of the newly developed recommender systems.
AbstractList A recommender system is a model that automatically recommends some meaningful cases (such as clips/films/goods/items) to the clients/people/consumers/users according to their (previous) interests. These systems are expected to recommend the items according to the users’ interests. There are two traditional general recommender system models, i.e., Collaborative Filtering Recommender System (ColFRS) and Content-based Filtering Recommender System (ConFRS). Also, there is another model that is a hybrid of those two traditional recommender systems; it is called Hybrid Recommender System (HRS). An HRS usually outperforms simple traditional recommender systems. The problems such as scalability, cold start, and sparsity belong to the main problems that any recommender system should solve. The memory-based (modeless) recommender systems benefit from good accuracies. But they suffer from a lack of admissible scalability. The model-based recommender systems suffer from a lack of admissible accuracies. But they benefit from good scalability. In this paper, it is tried to propose a hybrid model based on an automatically improved ontology to solve the scalability, cold start, and sparsity problems. Our proposed HRS also uses an innovative approach of clustering as an augmented section. When there are enough ratings, it uses a collaborative filtering approach to predict the missing ratings. When there are not enough ratings, it uses a content-based filtering approach to predict the missing ratings. In the content-based filtering section of our proposed HRS, ontology concepts are used to improve the accuracy of ratings’ prediction. If our target client is severely sparse, we cannot trust even the ratings predicted by the content-based filtering section of our proposed HRS. Therefore, our proposed HRS uses additive clustering to improve the prediction of the missing ratings if the target client is severely sparse. It is experimentally shown that our model outperforms many of the newly developed recommender systems.
Author Bahrani, Payam
Mirzarezaee, Mitra
Keshavarz, Ahmad
Parvin, Hamid
Minaei-Bidgoli, Behrouz
Author_xml – sequence: 1
  givenname: Payam
  surname: Bahrani
  fullname: Bahrani, Payam
  organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University
– sequence: 2
  givenname: Behrouz
  surname: Minaei-Bidgoli
  fullname: Minaei-Bidgoli, Behrouz
  organization: School of Computer Engineering, Iran University of Science and Technology
– sequence: 3
  givenname: Hamid
  surname: Parvin
  fullname: Parvin, Hamid
  email: parvin@iust.ac.ir
  organization: Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University
– sequence: 4
  givenname: Mitra
  surname: Mirzarezaee
  fullname: Mirzarezaee, Mitra
  organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University
– sequence: 5
  givenname: Ahmad
  surname: Keshavarz
  fullname: Keshavarz, Ahmad
  organization: Department of Electrical Engineering, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F87maPpX5CwUvvIZudaEo3W5Ot0P56t64gePA0DPM-M8MzQ5PYRUDomtFbRml5lxnjvCSUS0JVpSg5nqEpU6UgVGo5QVNacUq0kvwCzXLeUEqlKMUU3S_w-6FOocEZWhv74HAC17UtxAYSzofcQ4trm6HBXcQ24tDuUvc5tG67H4YpxLdLdO7tNsPVT52j9ePDevlMVq9PL8vFijjBqp4ASCVp5SunVSOddaVnhRfMC-FBeyobaOqC61qC1oWDuq4Ftbax3snClmKObsa1wwMfe8i92XT7FIeLRnBVqKqsOBtSfEy51OWcwJtdCq1NB8OoOckyoywzyDLfssxxgPQfyIXe9qGLfbJh-z8qRjTvTi4g_X71D_UF8fuCrg
CitedBy_id crossref_primary_10_1007_s11227_024_06590_z
crossref_primary_10_3390_electronics13245035
crossref_primary_10_1007_s11192_025_05420_0
crossref_primary_10_1007_s11227_025_07652_6
Cites_doi 10.1016/j.engappai.2012.02.014
10.1007/s10489-020-01806-0
10.1145/1278366.1278371
10.1016/j.eswa.2022.117079
10.1016/j.knosys.2015.03.006
10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
10.1016/j.asoc.2015.11.026
10.1007/s11042-020-09949-5
10.1007/s11042-021-10965-2
10.1016/j.future.2017.02.049
10.1016/j.neucom.2019.03.098
10.1007/s11036-014-0544-5
10.1007/s11227-021-04213-5
10.4304/jsw.5.7.745-752
10.1109/MC.2009.263
10.4108/eai.19-10-2018.2282541
10.1016/j.asoc.2013.09.004
10.1177/2516600x19848956
10.1016/j.ins.2016.06.012
10.1016/j.knosys.2014.01.006
10.1007/s10115-009-0200-8
10.1145/3158369
10.3837/tiis.2020.06.001
10.1016/j.eswa.2013.12.023
10.1007/s11227-022-04635-9
10.1016/j.eswa.2014.06.038
10.1108/10662241011050740
10.1016/j.asoc.2015.02.024
10.1007/978-981-13-1813-9_19
10.1007/978-981-10-7245-1_66
10.1007/s10489-015-0666-x
10.1016/j.phpro.2012.02.121
10.1007/s11227-021-04087-7
10.1007/s11280-020-00793-z
10.1155/2009/421425
10.1023/A:1021240730564
10.1016/j.elerap.2020.100978
10.1007/s11227-021-03930-1
10.1016/j.procs.2015.07.050
10.1109/ICASSP40776.2020.9054480
10.1007/978-3-211-93971-0_12
10.1016/j.eswa.2017.01.060
10.1016/j.knosys.2013.03.012
10.3233/JIFS-191225
10.1109/MIS.2007.58
10.1016/j.tele.2017.08.008
10.1145/3380688.3380712
10.1109/MIC.2003.1167344
10.1007/s11704-019-8123-3
10.1109/HIS.2008.25
10.1007/978-3-030-15032-7_75
10.1145/2043932.2043950
10.1155/2013/793091
10.1016/j.datak.2014.11.001
10.1007/978-981-10-0557-2_109
10.1145/1401890.1401944
10.1145/2645710.2645737
10.1016/j.knosys.2013.12.007
10.1007/978-0-387-85820-3_3
10.1145/2675744.2675759
10.1016/j.eswa.2017.09.058
10.1109/TIT.1982.1056489
10.5040/9798400660399
10.3115/992133.992154
10.1007/978-3-540-92673-3
10.1016/j.eswa.2011.08.020
10.4018/978-1-59140-905-2
10.1007/978-3-540-72079-9_12
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-024-05950-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database ProQuest
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 13385
ExternalDocumentID 10_1007_s11227_024_05950_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-ee45409f9c85d4cac7f16f31f33fe8f04dedb628b4e886cebbb30aadafc46a73
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001176417200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 30 04:22:33 EST 2025
Sat Nov 29 04:27:46 EST 2025
Tue Nov 18 20:42:47 EST 2025
Fri Feb 21 02:42:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Recommendation systems
Kmeans clustering
nearest neighbors
Ontology
WordNet
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ee45409f9c85d4cac7f16f31f33fe8f04dedb628b4e886cebbb30aadafc46a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256597921
PQPubID 2043774
PageCount 45
ParticipantIDs proquest_journals_3256597921
crossref_primary_10_1007_s11227_024_05950_z
crossref_citationtrail_10_1007_s11227_024_05950_z
springer_journals_10_1007_s11227_024_05950_z
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hu, Xiong, Lu, Wang, Xiong, Chen (CR8) 2020; 398
Pan, Yang, Cao, Lu, Zhang (CR56) 2015; 43
CR38
Nilashi, bin Ibrahim, Ithnin (CR30) 2014; 60
Pirasteh, Hwang, Jung (CR78) 2015
CR33
CR77
Noorian, Harounabadi, Ravanmehr (CR82) 2022; 202
Thakker, Patel, Shah (CR14) 2021; 80
CR76
Shristi, Mohanty (CR13) 2018
CR31
Tejeda-Lorente, Porcel, Bernabé-Moreno, Herrera-Viedma (CR35) 2015; 30
CR74
Zhang, Yao, Sun, Tay (CR19) 2019; 52
CR73
CR72
CR71
CR70
Lu, Shambour, Xu, Lin, Zhang (CR46) 2010; 20
Gong (CR25) 2010; 5
Dwicahya, Rosa, Nugroho (CR6) 2019
Tarus, Niu, Yousif (CR79) 2017; 72
Wang (CR2) 2022; 78
Deerwester, Dumais, Furnas, Landauer, Harshman (CR57) 1990; 41
Nilashi, bin Ibrahim, Ithnin (CR29) 2014; 41
CR49
CR48
CR47
CR42
CR41
Jain, Kumar, Kumar, Choudhury (CR9) 2018; 673
CR40
Rostami, Farahi, Berahmand, Forouzandeh, Ahmadian, Oussalah (CR4) 2022; 2022
Burke (CR36) 2002; 12
Manimurugan, Almutairi (CR3) 2022; 78
Hsu (CR80) 2021; 51
Ebadi, Krzyzak (CR65) 2016; 10
Adomavicius, Bauman, Mobasher, Ricci, Tuzhilin, Unger, Santos, Marinho, Daly, Chen, Falk, Koenigstein, de Moura (CR15) 2020
Jimenez, Gonzalez, Gelbukh (CR60) 2016; 367
Pan, He, Yu (CR39) 2020; 23
Su, Khoshgoftaar (CR17) 2009; 2009
CR18
CR16
CR59
CR58
Cheng, Wang (CR32) 2014; 18
CR11
CR55
CR10
CR53
Koren, Bell, Volinsky (CR54) 2009; 42
CR52
CR51
Wang (CR28) 2012; 24
CR50
Wang, He, Jiang, Li (CR64) 2022; 44
Moreno, Valls, Isern, Marin, Borràs (CR24) 2013; 26
Patra, Ganguly (CR12) 2019; 2
Forouzandeh, Berahmand, Rostami (CR7) 2021; 80
Kirubanantham (CR1) 2022; 78
CR27
Mu, Zeng (CR37) 2020; 14
CR69
CR68
CR23
CR67
CR22
CR66
CR21
CR20
Anand, Kearney, Shapcott (CR34) 2007; 7
CR63
CR62
CR61
Jain, Pamula, Yekun (CR5) 2022; 78
López-Nores, Pazos-Arias, García-Duque, Blanco-Fernández, Martín-Vicente, Fernández-Vilas, Ramos-Garber, Gil-Solla (CR43) 2010; 22
Pirasteh, Hwang, Jung (CR75) 2014
Sadaei, Enayatifar, Lee, Mahmud (CR26) 2016; 40
Martín-Vicente, Gil-Solla, Ramos-Cabrer, Pazos-Arias, Blanco-Fernández, López-Nores (CR44) 2014; 41
Porcel, Martinez-Cruz, Bernabé-Moreno, Tejeda-Lorente, Herrera-Viedma (CR45) 2015; 55
Kolahkaj, Harounabadi, Nikravanshalmani, Chinipardaz (CR81) 2020; 42
S Forouzandeh (5950_CR7) 2021; 80
JAK Shristi (5950_CR13) 2018
J Lu (5950_CR46) 2010; 20
C-L Hsu (5950_CR80) 2021; 51
5950_CR48
5950_CR47
P Pirasteh (5950_CR75) 2014
X Su (5950_CR17) 2009; 2009
Y Koren (5950_CR54) 2009; 42
JK Tarus (5950_CR79) 2017; 72
5950_CR49
5950_CR40
A Noorian (5950_CR82) 2022; 202
R Mu (5950_CR37) 2020; 14
5950_CR42
P Kirubanantham (5950_CR1) 2022; 78
5950_CR41
HJ Sadaei (5950_CR26) 2016; 40
I Dwicahya (5950_CR6) 2019
S Deerwester (5950_CR57) 1990; 41
S Jimenez (5950_CR60) 2016; 367
S Gong (5950_CR25) 2010; 5
5950_CR38
P Wang (5950_CR28) 2012; 24
5950_CR73
5950_CR72
5950_CR71
5950_CR70
5950_CR33
5950_CR77
A Ebadi (5950_CR65) 2016; 10
5950_CR76
S Patra (5950_CR12) 2019; 2
5950_CR31
5950_CR74
M Kolahkaj (5950_CR81) 2020; 42
P Pirasteh (5950_CR78) 2015
S Manimurugan (5950_CR3) 2022; 78
C Porcel (5950_CR45) 2015; 55
Y Hu (5950_CR8) 2020; 398
5950_CR69
5950_CR68
5950_CR23
SS Anand (5950_CR34) 2007; 7
5950_CR67
Q Wang (5950_CR64) 2022; 44
S Zhang (5950_CR19) 2019; 52
5950_CR27
5950_CR62
5950_CR61
5950_CR22
R Pan (5950_CR56) 2015; 43
5950_CR66
5950_CR21
5950_CR20
5950_CR63
R Burke (5950_CR36) 2002; 12
G Adomavicius (5950_CR15) 2020
A Moreno (5950_CR24) 2013; 26
U Thakker (5950_CR14) 2021; 80
M Nilashi (5950_CR29) 2014; 41
5950_CR59
5950_CR58
5950_CR18
S Wang (5950_CR2) 2022; 78
5950_CR16
KN Jain (5950_CR9) 2018; 673
M López-Nores (5950_CR43) 2010; 22
5950_CR51
5950_CR50
5950_CR11
5950_CR55
5950_CR10
L-C Cheng (5950_CR32) 2014; 18
A Tejeda-Lorente (5950_CR35) 2015; 30
M Nilashi (5950_CR30) 2014; 60
5950_CR53
5950_CR52
M Rostami (5950_CR4) 2022; 2022
MI Martín-Vicente (5950_CR44) 2014; 41
PK Jain (5950_CR5) 2022; 78
Y Pan (5950_CR39) 2020; 23
References_xml – ident: CR70
– ident: CR22
– volume: 26
  start-page: 633
  issue: 1
  year: 2013
  end-page: 651
  ident: CR24
  article-title: SigTur/E-destination: ontology-based personalized recommendation of tourism and leisure activities
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.02.014
– volume: 51
  start-page: 506
  year: 2021
  end-page: 526
  ident: CR80
  article-title: A multi-valued and sequential-labeled decision tree method for recommending sequential patterns in cold-start situations
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01806-0
– ident: CR49
– ident: CR68
– ident: CR74
– ident: CR16
– volume: 7
  start-page: 22
  issue: 4
  year: 2007
  ident: CR34
  article-title: Generating semantically enriched user profiles for web personalization
  publication-title: ACM Trans Internet Technol (TOIT)
  doi: 10.1145/1278366.1278371
– ident: CR51
– volume: 202
  year: 2022
  ident: CR82
  article-title: A novel Sequence-Aware personalized recommendation system based on multidimensional information
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117079
– year: 2015
  ident: CR78
  article-title: Exploiting matrix factorization to asymmetric user similarities in recommendation systems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.03.006
– volume: 41
  start-page: 391
  year: 1990
  end-page: 407
  ident: CR57
  article-title: Indexing by latent semantic analysis
  publication-title: J Am Soc Inform Sci
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
– ident: CR61
– ident: CR77
– ident: CR58
– volume: 40
  start-page: 132
  year: 2016
  end-page: 149
  ident: CR26
  article-title: A hybrid model based on differential fuzzy logic relationships and imperialist competitive algorithm for stock market forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.11.026
– volume: 80
  start-page: 7805
  issue: 5
  year: 2021
  end-page: 7832
  ident: CR7
  article-title: Presentation of a recommender system with ensemble learning and graph embedding: a case on MovieLens
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-020-09949-5
– volume: 80
  start-page: 28647
  issue: 19
  year: 2021
  end-page: 28672
  ident: CR14
  article-title: A comprehensive analysis on movie recommendation system employing collaborative filtering
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-021-10965-2
– ident: CR42
– ident: CR21
– ident: CR71
– volume: 72
  start-page: 37
  year: 2017
  end-page: 48
  ident: CR79
  article-title: A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.02.049
– volume: 398
  start-page: 485
  year: 2020
  end-page: 494
  ident: CR8
  article-title: Movie collaborative filtering with multiplex implicit feedbacks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.098
– ident: CR67
– year: 2014
  ident: CR75
  article-title: Weighted similarity schemes for high scalability in user-based collaborative filtering
  publication-title: Mob Netw Appl
  doi: 10.1007/s11036-014-0544-5
– ident: CR50
– volume: 2022
  start-page: 208
  year: 2022
  end-page: 215
  ident: CR4
  article-title: A novel explainable and health-aware food recommender system
  publication-title: KDIR
– ident: CR11
– volume: 78
  start-page: 9377
  issue: 7
  year: 2022
  end-page: 9391
  ident: CR3
  article-title: A user-based video recommendation approach using CAC filtering, PCA with LDOS-CoMoDa
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04213-5
– volume: 5
  start-page: 745
  issue: 7
  year: 2010
  end-page: 752
  ident: CR25
  article-title: A collaborative filtering recommendation algorithm based on user clustering and item clustering
  publication-title: J Softw
  doi: 10.4304/jsw.5.7.745-752
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  end-page: 37
  ident: CR54
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– year: 2019
  ident: CR6
  article-title: Movie recommender system comparison of user-based and item-based collaborative filtering systems
  publication-title: Sensors
  doi: 10.4108/eai.19-10-2018.2282541
– volume: 18
  start-page: 290
  year: 2014
  end-page: 301
  ident: CR32
  article-title: A fuzzy recommender system based on the integration of subjective preferences and objective information
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.09.004
– volume: 2
  start-page: 22
  year: 2019
  end-page: 34
  ident: CR12
  article-title: Improvising singular value decomposition by KNN for use in movie recommender systems
  publication-title: J Oper Strateg Plan
  doi: 10.1177/2516600x19848956
– volume: 10
  start-page: 1377
  issue: 8
  year: 2016
  end-page: 1385
  ident: CR65
  article-title: A hybrid multi-criteria hotel recommender system using explicit and implicit feedbacks
  publication-title: World Acad Sci Eng Technol Int J Comp Electr Automat Control Inform Eng
– ident: CR18
– ident: CR66
– ident: CR47
– volume: 367
  start-page: 373
  year: 2016
  end-page: 389
  ident: CR60
  article-title: Mathematical properties of soft cardinality: enhancing jaccard, dice and cosine similarity measures with element-wise distance
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.06.012
– ident: CR72
– volume: 60
  start-page: 82
  year: 2014
  end-page: 101
  ident: CR30
  article-title: Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and Neuro-Fuzzy system
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.01.006
– volume: 22
  start-page: 101
  issue: 1
  year: 2010
  end-page: 128
  ident: CR43
  article-title: MiSPOT: dynamic product placement for digital TV through MPEG-4 processing and semantic reasoning
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-009-0200-8
– volume: 44
  start-page: 390
  issue: 1
  year: 2022
  end-page: 403
  ident: CR64
  article-title: Robust bi-stochastic graph regularized matrix factorization for data clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 635
  year: 2020
  end-page: 637
  ident: CR15
  article-title: Workshop on context-aware recommender systems
  publication-title: RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22–26, 2020
– ident: CR53
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  end-page: 38
  ident: CR19
  article-title: Deep learning based recommender system: a survey and new perspectives
  publication-title: ACM Comput Surv
  doi: 10.1145/3158369
– volume: 14
  start-page: 2310
  year: 2020
  end-page: 2332
  ident: CR37
  article-title: Auxiliary stacked denoising autoencoder based collaborative filtering recommendation
  publication-title: KSII Trans Internet Inf Syst
  doi: 10.3837/tiis.2020.06.001
– ident: CR10
– volume: 41
  start-page: 3879
  issue: 8
  year: 2014
  end-page: 3900
  ident: CR29
  article-title: Hybrid recommendation approaches for multi-criteria collaborative filtering
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.12.023
– ident: CR33
– volume: 78
  start-page: 19322
  issue: 17
  year: 2022
  end-page: 19345
  ident: CR2
  article-title: Leveraging side information as adjusting embedding to improve user representation for recommendations
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04635-9
– volume: 41
  start-page: 7776
  issue: 17
  year: 2014
  end-page: 7788
  ident: CR44
  article-title: A semantic approach to improve neighborhood formation in collaborative recommender systems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.06.038
– volume: 20
  start-page: 342
  issue: 3
  year: 2010
  end-page: 365
  ident: CR46
  article-title: BizSeeker: a hybrid semantic recommendation system for personalized government-to-business e-services
  publication-title: Internet Res
  doi: 10.1108/10662241011050740
– ident: CR40
– ident: CR63
– ident: CR27
– ident: CR23
– volume: 30
  start-page: 778
  year: 2015
  end-page: 791
  ident: CR35
  article-title: REFORE: a recommender system for researchers based on bibliometrics
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.02.024
– year: 2018
  ident: CR13
  publication-title: A collaborative filtering approach for movies recommendation based on user clustering and item clustering
  doi: 10.1007/978-981-13-1813-9_19
– ident: CR69
– volume: 673
  start-page: 677
  year: 2018
  end-page: 686
  ident: CR9
  article-title: Movie recommendation system: hybrid information filtering system
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-981-10-7245-1_66
– volume: 43
  start-page: 614
  year: 2015
  end-page: 632
  ident: CR56
  article-title: Missing data imputation by k nearest neighbours based on grey relational structure and mutual information
  publication-title: Appl Intell
  doi: 10.1007/s10489-015-0666-x
– ident: CR48
– ident: CR73
– volume: 24
  start-page: 812
  year: 2012
  end-page: 816
  ident: CR28
  article-title: A personalized collaborative recommendation approach based on clustering of customers
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2012.02.121
– ident: CR38
– ident: CR52
– ident: CR31
– volume: 78
  start-page: 5203
  issue: 4
  year: 2022
  end-page: 5220
  ident: CR5
  article-title: A multi-label ensemble predicting model to service recommendation from social media contents
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04087-7
– volume: 23
  start-page: 2259
  year: 2020
  end-page: 2279
  ident: CR39
  article-title: Learning social representations with deep autoencoder for recommender system
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00793-z
– volume: 2009
  start-page: 4
  year: 2009
  ident: CR17
  article-title: A survey of collaborative filtering techniques
  publication-title: Advances in artificial intelligence
  doi: 10.1155/2009/421425
– ident: CR55
– volume: 12
  start-page: 331
  issue: 4
  year: 2002
  end-page: 370
  ident: CR36
  article-title: Hybrid recommender systems: survey and experiments
  publication-title: User Model User-Adap Inter
  doi: 10.1023/A:1021240730564
– ident: CR59
– ident: CR76
– volume: 42
  year: 2020
  ident: CR81
  article-title: A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining
  publication-title: Electron Commer Res Appl
  doi: 10.1016/j.elerap.2020.100978
– ident: CR41
– ident: CR62
– volume: 78
  start-page: 1944
  issue: 2
  year: 2022
  end-page: 1960
  ident: CR1
  article-title: An intelligent web service group-based recommendation system for long-term composition
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03930-1
– ident: CR20
– volume: 55
  start-page: 603
  year: 2015
  end-page: 612
  ident: CR45
  article-title: Integrating ontologies and fuzzy logic to represent user-trustworthiness in recommender systems
  publication-title: Proc Comp Sci
  doi: 10.1016/j.procs.2015.07.050
– volume: 80
  start-page: 28647
  issue: 19
  year: 2021
  ident: 5950_CR14
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-021-10965-2
– volume: 40
  start-page: 132
  year: 2016
  ident: 5950_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.11.026
– volume: 41
  start-page: 391
  year: 1990
  ident: 5950_CR57
  publication-title: J Am Soc Inform Sci
  doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
– ident: 5950_CR63
  doi: 10.1109/ICASSP40776.2020.9054480
– volume: 14
  start-page: 2310
  year: 2020
  ident: 5950_CR37
  publication-title: KSII Trans Internet Inf Syst
  doi: 10.3837/tiis.2020.06.001
– volume: 30
  start-page: 778
  year: 2015
  ident: 5950_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.02.024
– volume: 78
  start-page: 9377
  issue: 7
  year: 2022
  ident: 5950_CR3
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04213-5
– volume-title: A collaborative filtering approach for movies recommendation based on user clustering and item clustering
  year: 2018
  ident: 5950_CR13
  doi: 10.1007/978-981-13-1813-9_19
– ident: 5950_CR53
– ident: 5950_CR47
  doi: 10.1007/978-3-211-93971-0_12
– ident: 5950_CR77
  doi: 10.1016/j.eswa.2017.01.060
– year: 2019
  ident: 5950_CR6
  publication-title: Sensors
  doi: 10.4108/eai.19-10-2018.2282541
– ident: 5950_CR21
– ident: 5950_CR22
  doi: 10.1016/j.knosys.2013.03.012
– volume: 26
  start-page: 633
  issue: 1
  year: 2013
  ident: 5950_CR24
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.02.014
– volume: 55
  start-page: 603
  year: 2015
  ident: 5950_CR45
  publication-title: Proc Comp Sci
  doi: 10.1016/j.procs.2015.07.050
– ident: 5950_CR40
– volume: 10
  start-page: 1377
  issue: 8
  year: 2016
  ident: 5950_CR65
  publication-title: World Acad Sci Eng Technol Int J Comp Electr Automat Control Inform Eng
– ident: 5950_CR23
  doi: 10.3233/JIFS-191225
– year: 2014
  ident: 5950_CR75
  publication-title: Mob Netw Appl
  doi: 10.1007/s11036-014-0544-5
– ident: 5950_CR69
  doi: 10.1109/MIS.2007.58
– volume: 43
  start-page: 614
  year: 2015
  ident: 5950_CR56
  publication-title: Appl Intell
  doi: 10.1007/s10489-015-0666-x
– ident: 5950_CR73
  doi: 10.1016/j.tele.2017.08.008
– volume: 673
  start-page: 677
  year: 2018
  ident: 5950_CR9
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-981-10-7245-1_66
– start-page: 635
  volume-title: RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22–26, 2020
  year: 2020
  ident: 5950_CR15
– volume: 2022
  start-page: 208
  year: 2022
  ident: 5950_CR4
  publication-title: KDIR
– volume: 24
  start-page: 812
  year: 2012
  ident: 5950_CR28
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2012.02.121
– ident: 5950_CR11
  doi: 10.1145/3380688.3380712
– volume: 60
  start-page: 82
  year: 2014
  ident: 5950_CR30
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.01.006
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 5950_CR54
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– ident: 5950_CR71
  doi: 10.1109/MIC.2003.1167344
– ident: 5950_CR38
  doi: 10.1007/s11704-019-8123-3
– ident: 5950_CR61
  doi: 10.1109/HIS.2008.25
– ident: 5950_CR10
  doi: 10.1007/978-3-030-15032-7_75
– volume: 2
  start-page: 22
  year: 2019
  ident: 5950_CR12
  publication-title: J Oper Strateg Plan
  doi: 10.1177/2516600x19848956
– ident: 5950_CR49
– ident: 5950_CR66
– volume: 2009
  start-page: 4
  year: 2009
  ident: 5950_CR17
  publication-title: Advances in artificial intelligence
  doi: 10.1155/2009/421425
– volume: 5
  start-page: 745
  issue: 7
  year: 2010
  ident: 5950_CR25
  publication-title: J Softw
  doi: 10.4304/jsw.5.7.745-752
– ident: 5950_CR33
  doi: 10.1145/2043932.2043950
– year: 2015
  ident: 5950_CR78
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.03.006
– ident: 5950_CR72
  doi: 10.1016/j.knosys.2015.03.006
– volume: 78
  start-page: 1944
  issue: 2
  year: 2022
  ident: 5950_CR1
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03930-1
– ident: 5950_CR67
  doi: 10.1155/2013/793091
– volume: 80
  start-page: 7805
  issue: 5
  year: 2021
  ident: 5950_CR7
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-020-09949-5
– ident: 5950_CR59
– ident: 5950_CR76
  doi: 10.1016/j.datak.2014.11.001
– volume: 42
  year: 2020
  ident: 5950_CR81
  publication-title: Electron Commer Res Appl
  doi: 10.1016/j.elerap.2020.100978
– volume: 41
  start-page: 7776
  issue: 17
  year: 2014
  ident: 5950_CR44
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.06.038
– ident: 5950_CR48
  doi: 10.1007/978-981-10-0557-2_109
– ident: 5950_CR51
– volume: 398
  start-page: 485
  year: 2020
  ident: 5950_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.098
– ident: 5950_CR70
  doi: 10.1145/1401890.1401944
– volume: 23
  start-page: 2259
  year: 2020
  ident: 5950_CR39
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00793-z
– ident: 5950_CR18
  doi: 10.1145/2645710.2645737
– ident: 5950_CR20
  doi: 10.1016/j.knosys.2013.12.007
– volume: 367
  start-page: 373
  year: 2016
  ident: 5950_CR60
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.06.012
– ident: 5950_CR62
  doi: 10.1007/978-0-387-85820-3_3
– volume: 20
  start-page: 342
  issue: 3
  year: 2010
  ident: 5950_CR46
  publication-title: Internet Res
  doi: 10.1108/10662241011050740
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 5950_CR19
  publication-title: ACM Comput Surv
  doi: 10.1145/3158369
– volume: 7
  start-page: 22
  issue: 4
  year: 2007
  ident: 5950_CR34
  publication-title: ACM Trans Internet Technol (TOIT)
  doi: 10.1145/1278366.1278371
– volume: 41
  start-page: 3879
  issue: 8
  year: 2014
  ident: 5950_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.12.023
– ident: 5950_CR31
  doi: 10.1145/2675744.2675759
– volume: 72
  start-page: 37
  year: 2017
  ident: 5950_CR79
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2017.02.049
– volume: 18
  start-page: 290
  year: 2014
  ident: 5950_CR32
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.09.004
– volume: 44
  start-page: 390
  issue: 1
  year: 2022
  ident: 5950_CR64
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: 5950_CR74
  doi: 10.1016/j.eswa.2017.09.058
– ident: 5950_CR52
  doi: 10.1109/TIT.1982.1056489
– volume: 51
  start-page: 506
  year: 2021
  ident: 5950_CR80
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01806-0
– ident: 5950_CR16
– volume: 202
  year: 2022
  ident: 5950_CR82
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117079
– volume: 22
  start-page: 101
  issue: 1
  year: 2010
  ident: 5950_CR43
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-009-0200-8
– ident: 5950_CR58
  doi: 10.5040/9798400660399
– volume: 78
  start-page: 5203
  issue: 4
  year: 2022
  ident: 5950_CR5
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04087-7
– ident: 5950_CR50
  doi: 10.3115/992133.992154
– ident: 5950_CR41
  doi: 10.1007/978-3-540-92673-3
– ident: 5950_CR68
– ident: 5950_CR27
  doi: 10.1016/j.eswa.2011.08.020
– ident: 5950_CR42
  doi: 10.4018/978-1-59140-905-2
– volume: 12
  start-page: 331
  issue: 4
  year: 2002
  ident: 5950_CR36
  publication-title: User Model User-Adap Inter
  doi: 10.1023/A:1021240730564
– ident: 5950_CR55
  doi: 10.1007/978-3-540-72079-9_12
– volume: 78
  start-page: 19322
  issue: 17
  year: 2022
  ident: 5950_CR2
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04635-9
SSID ssj0004373
Score 2.3695288
Snippet A recommender system is a model that automatically recommends some meaningful cases (such as clips/films/goods/items) to the clients/people/consumers/users...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13341
SubjectTerms Accuracy
Algorithms
Approximation
Clustering
Cold
Collaboration
Compilers
Computer Science
Feedback
Filtration
Interpreters
Machine learning
Ontology
Processor Architectures
Programming Languages
Ratings
Recommender systems
Semantics
Sparsity
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNLA0aZochx94kCE4ZLeSpAkOtk7WTXB_vUnaWhQV9FiahvBeXn7v5fX9HgDnhMcONRlGKsIEUasEEppppCgzVlvpjsNAmX-fDAZ8NBIPVVFYUf_tXqckw0ndFLvhKEqQwxTkXIK4h1brYCP2bDM-Rn98aqohSZlXFi4w4jGNqlKZ7-f4DEeNj_klLRrQ5rb9v3XugO3Ku4T9cjvsgjWT74F23bkBVoa8D6778PnN12rBwkydbMca-sh4Og2N5WBJ7ww9wmVwlkOZw3G4fHCPerL03ApuRQdgeHszvLpDVT8FpJ2hLZAxnm5PWKF5nFEtdWIxswRbQqzhtkczkykWcUUN50wbpRTpSZlJqymTCTkErXyWmyMADVYsMYKpRHJqKVeRZoIZSnoq5iZhHYBrqaa64hr3LS8macOS7KWUOimlQUrpqgMuPr55KZk2fh3drZWVVlZXpMT5by5AEhHugMtaOc3rn2c7_tvwE7AVBf36y5guaC3mS3MKNvXrYlzMz8JufAelpdqc
  priority: 102
  providerName: Springer Nature
Title A hybrid semantic recommender system based on an improved clustering
URI https://link.springer.com/article/10.1007/s11227-024-05950-z
https://www.proquest.com/docview/3256597921
Volume 80
WOSCitedRecordID wos001176417200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database ProQuest
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9ODFb3F-jBy8aXBt0jQ5iZ8IyhhTRLyUJk1wsHXqpuD-epM2tSi4i5dAaRtC3mfey_s9gAPCI2s1WYBlGBBMjRRYKKawpEwbZVKrDgvI_Nu40-GPj6LrA25jf62y0omFos5GysXIj4m1zdb5FWFw8vKKXdcol131LTTmYcEhlVk-Xzi77HR7dWUkKXPMwh6SeERDXzZTFs8FYRhja6OwdTGiNp7-NE21v_krRVpYnquV_655FZa9z4lOSyZZgzmdr8NK1c8BefHegItT9PzpKrjQWA_tjvcVcufl4bBoN4dK0Gfk7F6GRjlKc9QvQhL2UQ3eHeKCXf8m3F9d3p9fY99lASsrfhOstQPhE0YoHmVUpSo2ATMkMIQYzU2bZjqTLOSSas6Z0lJK0k7TLDWKsjQmW9DIR7neBqQDyWItmIxTTg3lMlRMME1JW0Zcx6wJQbW_ifII5K4RxiCpsZMdTRJLk6SgSTJtwuH3Py8l_sbMr_cqQiReFsdJTYUmHFWkrF__PdvO7Nl2YSksuMeFZPagMXl71_uwqD4m_fFby3NiC-ZvYtxyV0rv7NiNnuzYu3v4AuJA6Rs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB4FWoleSnmpgbT1oZyKRdb2eu0DQgiKEiVEPeTAzVp7bRGJbIAEEPyn_kfsfbACqdw49LjaXUvr-ebhmZ1vAH5SEXuvySOsSUQxc1piabjBmnHrjEu9OSwo84fJaCTOz-WfFvyte2HCb5W1TSwMdTYzIUe-T71v9sGvJNHh1TUOU6NCdbUeoVHCYmAf7v2RbX7QP_Hy3SXk9Pf4uIerqQLYeLgtsLWBdE46aUScMZOaxEXc0chR6qxwXZbZTHMiNLNCcGO11rSbplnqDONpQv2yS_CBUcGDQg0S3LRh0rKgLf2JTMSMVD06ZadeREiCvUPEPp6Ju_jxpR9sgttX9djCzZ2u_mcb9AU-V_E0OioVYA1aNl-H1XpWBapM1wacHKGLh9CdhuZ26tE0MSjkAqbTYpQeKgmtUfDpGZrlKM3RpEi3-EtzeRvYJPx2bcL4PT5lC5bzWW6_ArKR5omVXCepYI4JTQyX3DLa1bGwCW9DVItTmYpdPQz5uFQNL3SAgPIQUAUE1GMbfj2_c1Vyi7z5dKeWu6rszFw1Qm_DXo2c5va_V9t-e7UfsNIbnw3VsD8a7MAnUgA3pJ46sLy4ubXf4KO5W0zmN98LFUCg3hlRT8HIRE8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1yfOXjTYNukaXIU10VRFtFFvJUmTXBht8o-BPfXm_RhVVQQj6VpCDOZzkwm3zcAh4SH1msyH8vAJ5gaKbBQTGFJmTbKJPZ3mFPmX0edDn94EDcfUPz5bfeqJFlgGhxLUzY-eU7NSQ1884Mgwta_YBsehB6ezsIctZmMu9R1e3dfIyNJUWMWNkniIQ1K2Mz3c3x2TXW8-aVEmnue9vL_17wCS2XUiU6LbbIKMzpbg-WqowMqDXwdWqfo8dVhuNBID6zMewq5jHkwyBvOoYL2GTnPl6KnDCUZ6uWHEvZR9SeOc8GubgO67fPu2QUu-yxgZQ1wjLV2NHzCCMXDlKpERcZnhviGEKO58WiqU8kCLqnmnCktpSRekqSJUZQlEdmERvaU6S1A2pcs0oLJKOHUUC4DxQTTlHgy5DpiTfArCceq5CB3rTD6cc2e7KQUWynFuZTiaROO3r95Lhg4fh29WykuLq1xFBMb19nESQR-E44rRdWvf55t-2_DD2DhptWOry87VzuwGOSqduc1u9AYDyd6D-bVy7g3Gu7nm_QN5I7mZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+semantic+recommender+system+based+on+an+improved+clustering&rft.jtitle=The+Journal+of+supercomputing&rft.au=Bahrani%2C+Payam&rft.au=Minaei-Bidgoli%2C+Behrouz&rft.au=Parvin%2C+Hamid&rft.au=Mirzarezaee%2C+Mitra&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=9&rft.spage=13341&rft.epage=13385&rft_id=info:doi/10.1007%2Fs11227-024-05950-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon