A hybrid semantic recommender system based on an improved clustering
A recommender system is a model that automatically recommends some meaningful cases (such as clips/films/goods/items) to the clients/people/consumers/users according to their (previous) interests. These systems are expected to recommend the items according to the users’ interests. There are two trad...
Gespeichert in:
| Veröffentlicht in: | The Journal of supercomputing Jg. 80; H. 9; S. 13341 - 13385 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.06.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A recommender system is a model that automatically recommends some meaningful cases (such as clips/films/goods/items) to the clients/people/consumers/users according to their (previous) interests. These systems are expected to recommend the items according to the users’ interests. There are two traditional general recommender system models, i.e., Collaborative Filtering Recommender System (ColFRS) and Content-based Filtering Recommender System (ConFRS). Also, there is another model that is a hybrid of those two traditional recommender systems; it is called Hybrid Recommender System (HRS). An HRS usually outperforms simple traditional recommender systems. The problems such as scalability, cold start, and sparsity belong to the main problems that any recommender system should solve. The memory-based (modeless) recommender systems benefit from good accuracies. But they suffer from a lack of admissible scalability. The model-based recommender systems suffer from a lack of admissible accuracies. But they benefit from good scalability. In this paper, it is tried to propose a hybrid model based on an automatically improved ontology to solve the scalability, cold start, and sparsity problems. Our proposed HRS also uses an innovative approach of clustering as an augmented section. When there are enough ratings, it uses a collaborative filtering approach to predict the missing ratings. When there are not enough ratings, it uses a content-based filtering approach to predict the missing ratings. In the content-based filtering section of our proposed HRS, ontology concepts are used to improve the accuracy of ratings’ prediction. If our target client is severely sparse, we cannot trust even the ratings predicted by the content-based filtering section of our proposed HRS. Therefore, our proposed HRS uses additive clustering to improve the prediction of the missing ratings if the target client is severely sparse. It is experimentally shown that our model outperforms many of the newly developed recommender systems. |
|---|---|
| AbstractList | A recommender system is a model that automatically recommends some meaningful cases (such as clips/films/goods/items) to the clients/people/consumers/users according to their (previous) interests. These systems are expected to recommend the items according to the users’ interests. There are two traditional general recommender system models, i.e., Collaborative Filtering Recommender System (ColFRS) and Content-based Filtering Recommender System (ConFRS). Also, there is another model that is a hybrid of those two traditional recommender systems; it is called Hybrid Recommender System (HRS). An HRS usually outperforms simple traditional recommender systems. The problems such as scalability, cold start, and sparsity belong to the main problems that any recommender system should solve. The memory-based (modeless) recommender systems benefit from good accuracies. But they suffer from a lack of admissible scalability. The model-based recommender systems suffer from a lack of admissible accuracies. But they benefit from good scalability. In this paper, it is tried to propose a hybrid model based on an automatically improved ontology to solve the scalability, cold start, and sparsity problems. Our proposed HRS also uses an innovative approach of clustering as an augmented section. When there are enough ratings, it uses a collaborative filtering approach to predict the missing ratings. When there are not enough ratings, it uses a content-based filtering approach to predict the missing ratings. In the content-based filtering section of our proposed HRS, ontology concepts are used to improve the accuracy of ratings’ prediction. If our target client is severely sparse, we cannot trust even the ratings predicted by the content-based filtering section of our proposed HRS. Therefore, our proposed HRS uses additive clustering to improve the prediction of the missing ratings if the target client is severely sparse. It is experimentally shown that our model outperforms many of the newly developed recommender systems. |
| Author | Bahrani, Payam Mirzarezaee, Mitra Keshavarz, Ahmad Parvin, Hamid Minaei-Bidgoli, Behrouz |
| Author_xml | – sequence: 1 givenname: Payam surname: Bahrani fullname: Bahrani, Payam organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University – sequence: 2 givenname: Behrouz surname: Minaei-Bidgoli fullname: Minaei-Bidgoli, Behrouz organization: School of Computer Engineering, Iran University of Science and Technology – sequence: 3 givenname: Hamid surname: Parvin fullname: Parvin, Hamid email: parvin@iust.ac.ir organization: Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University – sequence: 4 givenname: Mitra surname: Mirzarezaee fullname: Mirzarezaee, Mitra organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University – sequence: 5 givenname: Ahmad surname: Keshavarz fullname: Keshavarz, Ahmad organization: Department of Electrical Engineering, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F87maPpX5CwUvvIZudaEo3W5Ot0P56t64gePA0DPM-M8MzQ5PYRUDomtFbRml5lxnjvCSUS0JVpSg5nqEpU6UgVGo5QVNacUq0kvwCzXLeUEqlKMUU3S_w-6FOocEZWhv74HAC17UtxAYSzofcQ4trm6HBXcQ24tDuUvc5tG67H4YpxLdLdO7tNsPVT52j9ePDevlMVq9PL8vFijjBqp4ASCVp5SunVSOddaVnhRfMC-FBeyobaOqC61qC1oWDuq4Ftbax3snClmKObsa1wwMfe8i92XT7FIeLRnBVqKqsOBtSfEy51OWcwJtdCq1NB8OoOckyoywzyDLfssxxgPQfyIXe9qGLfbJh-z8qRjTvTi4g_X71D_UF8fuCrg |
| CitedBy_id | crossref_primary_10_1007_s11227_024_06590_z crossref_primary_10_3390_electronics13245035 crossref_primary_10_1007_s11192_025_05420_0 crossref_primary_10_1007_s11227_025_07652_6 |
| Cites_doi | 10.1016/j.engappai.2012.02.014 10.1007/s10489-020-01806-0 10.1145/1278366.1278371 10.1016/j.eswa.2022.117079 10.1016/j.knosys.2015.03.006 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 10.1016/j.asoc.2015.11.026 10.1007/s11042-020-09949-5 10.1007/s11042-021-10965-2 10.1016/j.future.2017.02.049 10.1016/j.neucom.2019.03.098 10.1007/s11036-014-0544-5 10.1007/s11227-021-04213-5 10.4304/jsw.5.7.745-752 10.1109/MC.2009.263 10.4108/eai.19-10-2018.2282541 10.1016/j.asoc.2013.09.004 10.1177/2516600x19848956 10.1016/j.ins.2016.06.012 10.1016/j.knosys.2014.01.006 10.1007/s10115-009-0200-8 10.1145/3158369 10.3837/tiis.2020.06.001 10.1016/j.eswa.2013.12.023 10.1007/s11227-022-04635-9 10.1016/j.eswa.2014.06.038 10.1108/10662241011050740 10.1016/j.asoc.2015.02.024 10.1007/978-981-13-1813-9_19 10.1007/978-981-10-7245-1_66 10.1007/s10489-015-0666-x 10.1016/j.phpro.2012.02.121 10.1007/s11227-021-04087-7 10.1007/s11280-020-00793-z 10.1155/2009/421425 10.1023/A:1021240730564 10.1016/j.elerap.2020.100978 10.1007/s11227-021-03930-1 10.1016/j.procs.2015.07.050 10.1109/ICASSP40776.2020.9054480 10.1007/978-3-211-93971-0_12 10.1016/j.eswa.2017.01.060 10.1016/j.knosys.2013.03.012 10.3233/JIFS-191225 10.1109/MIS.2007.58 10.1016/j.tele.2017.08.008 10.1145/3380688.3380712 10.1109/MIC.2003.1167344 10.1007/s11704-019-8123-3 10.1109/HIS.2008.25 10.1007/978-3-030-15032-7_75 10.1145/2043932.2043950 10.1155/2013/793091 10.1016/j.datak.2014.11.001 10.1007/978-981-10-0557-2_109 10.1145/1401890.1401944 10.1145/2645710.2645737 10.1016/j.knosys.2013.12.007 10.1007/978-0-387-85820-3_3 10.1145/2675744.2675759 10.1016/j.eswa.2017.09.058 10.1109/TIT.1982.1056489 10.5040/9798400660399 10.3115/992133.992154 10.1007/978-3-540-92673-3 10.1016/j.eswa.2011.08.020 10.4018/978-1-59140-905-2 10.1007/978-3-540-72079-9_12 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11227-024-05950-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 13385 |
| ExternalDocumentID | 10_1007_s11227_024_05950_z |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-ee45409f9c85d4cac7f16f31f33fe8f04dedb628b4e886cebbb30aadafc46a73 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001176417200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sun Nov 30 04:22:33 EST 2025 Sat Nov 29 04:27:46 EST 2025 Tue Nov 18 20:42:47 EST 2025 Fri Feb 21 02:42:15 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Recommendation systems Kmeans clustering nearest neighbors Ontology WordNet |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ee45409f9c85d4cac7f16f31f33fe8f04dedb628b4e886cebbb30aadafc46a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256597921 |
| PQPubID | 2043774 |
| PageCount | 45 |
| ParticipantIDs | proquest_journals_3256597921 crossref_primary_10_1007_s11227_024_05950_z crossref_citationtrail_10_1007_s11227_024_05950_z springer_journals_10_1007_s11227_024_05950_z |
| PublicationCentury | 2000 |
| PublicationDate | 20240600 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Hu, Xiong, Lu, Wang, Xiong, Chen (CR8) 2020; 398 Pan, Yang, Cao, Lu, Zhang (CR56) 2015; 43 CR38 Nilashi, bin Ibrahim, Ithnin (CR30) 2014; 60 Pirasteh, Hwang, Jung (CR78) 2015 CR33 CR77 Noorian, Harounabadi, Ravanmehr (CR82) 2022; 202 Thakker, Patel, Shah (CR14) 2021; 80 CR76 Shristi, Mohanty (CR13) 2018 CR31 Tejeda-Lorente, Porcel, Bernabé-Moreno, Herrera-Viedma (CR35) 2015; 30 CR74 Zhang, Yao, Sun, Tay (CR19) 2019; 52 CR73 CR72 CR71 CR70 Lu, Shambour, Xu, Lin, Zhang (CR46) 2010; 20 Gong (CR25) 2010; 5 Dwicahya, Rosa, Nugroho (CR6) 2019 Tarus, Niu, Yousif (CR79) 2017; 72 Wang (CR2) 2022; 78 Deerwester, Dumais, Furnas, Landauer, Harshman (CR57) 1990; 41 Nilashi, bin Ibrahim, Ithnin (CR29) 2014; 41 CR49 CR48 CR47 CR42 CR41 Jain, Kumar, Kumar, Choudhury (CR9) 2018; 673 CR40 Rostami, Farahi, Berahmand, Forouzandeh, Ahmadian, Oussalah (CR4) 2022; 2022 Burke (CR36) 2002; 12 Manimurugan, Almutairi (CR3) 2022; 78 Hsu (CR80) 2021; 51 Ebadi, Krzyzak (CR65) 2016; 10 Adomavicius, Bauman, Mobasher, Ricci, Tuzhilin, Unger, Santos, Marinho, Daly, Chen, Falk, Koenigstein, de Moura (CR15) 2020 Jimenez, Gonzalez, Gelbukh (CR60) 2016; 367 Pan, He, Yu (CR39) 2020; 23 Su, Khoshgoftaar (CR17) 2009; 2009 CR18 CR16 CR59 CR58 Cheng, Wang (CR32) 2014; 18 CR11 CR55 CR10 CR53 Koren, Bell, Volinsky (CR54) 2009; 42 CR52 CR51 Wang (CR28) 2012; 24 CR50 Wang, He, Jiang, Li (CR64) 2022; 44 Moreno, Valls, Isern, Marin, Borràs (CR24) 2013; 26 Patra, Ganguly (CR12) 2019; 2 Forouzandeh, Berahmand, Rostami (CR7) 2021; 80 Kirubanantham (CR1) 2022; 78 CR27 Mu, Zeng (CR37) 2020; 14 CR69 CR68 CR23 CR67 CR22 CR66 CR21 CR20 Anand, Kearney, Shapcott (CR34) 2007; 7 CR63 CR62 CR61 Jain, Pamula, Yekun (CR5) 2022; 78 López-Nores, Pazos-Arias, García-Duque, Blanco-Fernández, Martín-Vicente, Fernández-Vilas, Ramos-Garber, Gil-Solla (CR43) 2010; 22 Pirasteh, Hwang, Jung (CR75) 2014 Sadaei, Enayatifar, Lee, Mahmud (CR26) 2016; 40 Martín-Vicente, Gil-Solla, Ramos-Cabrer, Pazos-Arias, Blanco-Fernández, López-Nores (CR44) 2014; 41 Porcel, Martinez-Cruz, Bernabé-Moreno, Tejeda-Lorente, Herrera-Viedma (CR45) 2015; 55 Kolahkaj, Harounabadi, Nikravanshalmani, Chinipardaz (CR81) 2020; 42 S Forouzandeh (5950_CR7) 2021; 80 JAK Shristi (5950_CR13) 2018 J Lu (5950_CR46) 2010; 20 C-L Hsu (5950_CR80) 2021; 51 5950_CR48 5950_CR47 P Pirasteh (5950_CR75) 2014 X Su (5950_CR17) 2009; 2009 Y Koren (5950_CR54) 2009; 42 JK Tarus (5950_CR79) 2017; 72 5950_CR49 5950_CR40 A Noorian (5950_CR82) 2022; 202 R Mu (5950_CR37) 2020; 14 5950_CR42 P Kirubanantham (5950_CR1) 2022; 78 5950_CR41 HJ Sadaei (5950_CR26) 2016; 40 I Dwicahya (5950_CR6) 2019 S Deerwester (5950_CR57) 1990; 41 S Jimenez (5950_CR60) 2016; 367 S Gong (5950_CR25) 2010; 5 5950_CR38 P Wang (5950_CR28) 2012; 24 5950_CR73 5950_CR72 5950_CR71 5950_CR70 5950_CR33 5950_CR77 A Ebadi (5950_CR65) 2016; 10 5950_CR76 S Patra (5950_CR12) 2019; 2 5950_CR31 5950_CR74 M Kolahkaj (5950_CR81) 2020; 42 P Pirasteh (5950_CR78) 2015 S Manimurugan (5950_CR3) 2022; 78 C Porcel (5950_CR45) 2015; 55 Y Hu (5950_CR8) 2020; 398 5950_CR69 5950_CR68 5950_CR23 SS Anand (5950_CR34) 2007; 7 5950_CR67 Q Wang (5950_CR64) 2022; 44 S Zhang (5950_CR19) 2019; 52 5950_CR27 5950_CR62 5950_CR61 5950_CR22 R Pan (5950_CR56) 2015; 43 5950_CR66 5950_CR21 5950_CR20 5950_CR63 R Burke (5950_CR36) 2002; 12 G Adomavicius (5950_CR15) 2020 A Moreno (5950_CR24) 2013; 26 U Thakker (5950_CR14) 2021; 80 M Nilashi (5950_CR29) 2014; 41 5950_CR59 5950_CR58 5950_CR18 S Wang (5950_CR2) 2022; 78 5950_CR16 KN Jain (5950_CR9) 2018; 673 M López-Nores (5950_CR43) 2010; 22 5950_CR51 5950_CR50 5950_CR11 5950_CR55 5950_CR10 L-C Cheng (5950_CR32) 2014; 18 A Tejeda-Lorente (5950_CR35) 2015; 30 M Nilashi (5950_CR30) 2014; 60 5950_CR53 5950_CR52 M Rostami (5950_CR4) 2022; 2022 MI Martín-Vicente (5950_CR44) 2014; 41 PK Jain (5950_CR5) 2022; 78 Y Pan (5950_CR39) 2020; 23 |
| References_xml | – ident: CR70 – ident: CR22 – volume: 26 start-page: 633 issue: 1 year: 2013 end-page: 651 ident: CR24 article-title: SigTur/E-destination: ontology-based personalized recommendation of tourism and leisure activities publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.02.014 – volume: 51 start-page: 506 year: 2021 end-page: 526 ident: CR80 article-title: A multi-valued and sequential-labeled decision tree method for recommending sequential patterns in cold-start situations publication-title: Appl Intell doi: 10.1007/s10489-020-01806-0 – ident: CR49 – ident: CR68 – ident: CR74 – ident: CR16 – volume: 7 start-page: 22 issue: 4 year: 2007 ident: CR34 article-title: Generating semantically enriched user profiles for web personalization publication-title: ACM Trans Internet Technol (TOIT) doi: 10.1145/1278366.1278371 – ident: CR51 – volume: 202 year: 2022 ident: CR82 article-title: A novel Sequence-Aware personalized recommendation system based on multidimensional information publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117079 – year: 2015 ident: CR78 article-title: Exploiting matrix factorization to asymmetric user similarities in recommendation systems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.03.006 – volume: 41 start-page: 391 year: 1990 end-page: 407 ident: CR57 article-title: Indexing by latent semantic analysis publication-title: J Am Soc Inform Sci doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 – ident: CR61 – ident: CR77 – ident: CR58 – volume: 40 start-page: 132 year: 2016 end-page: 149 ident: CR26 article-title: A hybrid model based on differential fuzzy logic relationships and imperialist competitive algorithm for stock market forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.11.026 – volume: 80 start-page: 7805 issue: 5 year: 2021 end-page: 7832 ident: CR7 article-title: Presentation of a recommender system with ensemble learning and graph embedding: a case on MovieLens publication-title: Multim Tools Appl doi: 10.1007/s11042-020-09949-5 – volume: 80 start-page: 28647 issue: 19 year: 2021 end-page: 28672 ident: CR14 article-title: A comprehensive analysis on movie recommendation system employing collaborative filtering publication-title: Multim Tools Appl doi: 10.1007/s11042-021-10965-2 – ident: CR42 – ident: CR21 – ident: CR71 – volume: 72 start-page: 37 year: 2017 end-page: 48 ident: CR79 article-title: A hybrid knowledge-based recommender system for e-learning based on ontology and sequential pattern mining publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.02.049 – volume: 398 start-page: 485 year: 2020 end-page: 494 ident: CR8 article-title: Movie collaborative filtering with multiplex implicit feedbacks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.098 – ident: CR67 – year: 2014 ident: CR75 article-title: Weighted similarity schemes for high scalability in user-based collaborative filtering publication-title: Mob Netw Appl doi: 10.1007/s11036-014-0544-5 – ident: CR50 – volume: 2022 start-page: 208 year: 2022 end-page: 215 ident: CR4 article-title: A novel explainable and health-aware food recommender system publication-title: KDIR – ident: CR11 – volume: 78 start-page: 9377 issue: 7 year: 2022 end-page: 9391 ident: CR3 article-title: A user-based video recommendation approach using CAC filtering, PCA with LDOS-CoMoDa publication-title: J Supercomput doi: 10.1007/s11227-021-04213-5 – volume: 5 start-page: 745 issue: 7 year: 2010 end-page: 752 ident: CR25 article-title: A collaborative filtering recommendation algorithm based on user clustering and item clustering publication-title: J Softw doi: 10.4304/jsw.5.7.745-752 – volume: 42 start-page: 30 issue: 8 year: 2009 end-page: 37 ident: CR54 article-title: Matrix factorization techniques for recommender systems publication-title: Computer doi: 10.1109/MC.2009.263 – year: 2019 ident: CR6 article-title: Movie recommender system comparison of user-based and item-based collaborative filtering systems publication-title: Sensors doi: 10.4108/eai.19-10-2018.2282541 – volume: 18 start-page: 290 year: 2014 end-page: 301 ident: CR32 article-title: A fuzzy recommender system based on the integration of subjective preferences and objective information publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.09.004 – volume: 2 start-page: 22 year: 2019 end-page: 34 ident: CR12 article-title: Improvising singular value decomposition by KNN for use in movie recommender systems publication-title: J Oper Strateg Plan doi: 10.1177/2516600x19848956 – volume: 10 start-page: 1377 issue: 8 year: 2016 end-page: 1385 ident: CR65 article-title: A hybrid multi-criteria hotel recommender system using explicit and implicit feedbacks publication-title: World Acad Sci Eng Technol Int J Comp Electr Automat Control Inform Eng – ident: CR18 – ident: CR66 – ident: CR47 – volume: 367 start-page: 373 year: 2016 end-page: 389 ident: CR60 article-title: Mathematical properties of soft cardinality: enhancing jaccard, dice and cosine similarity measures with element-wise distance publication-title: Inf Sci doi: 10.1016/j.ins.2016.06.012 – ident: CR72 – volume: 60 start-page: 82 year: 2014 end-page: 101 ident: CR30 article-title: Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and Neuro-Fuzzy system publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.01.006 – volume: 22 start-page: 101 issue: 1 year: 2010 end-page: 128 ident: CR43 article-title: MiSPOT: dynamic product placement for digital TV through MPEG-4 processing and semantic reasoning publication-title: Knowl Inf Syst doi: 10.1007/s10115-009-0200-8 – volume: 44 start-page: 390 issue: 1 year: 2022 end-page: 403 ident: CR64 article-title: Robust bi-stochastic graph regularized matrix factorization for data clustering publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 635 year: 2020 end-page: 637 ident: CR15 article-title: Workshop on context-aware recommender systems publication-title: RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22–26, 2020 – ident: CR53 – volume: 52 start-page: 1 issue: 1 year: 2019 end-page: 38 ident: CR19 article-title: Deep learning based recommender system: a survey and new perspectives publication-title: ACM Comput Surv doi: 10.1145/3158369 – volume: 14 start-page: 2310 year: 2020 end-page: 2332 ident: CR37 article-title: Auxiliary stacked denoising autoencoder based collaborative filtering recommendation publication-title: KSII Trans Internet Inf Syst doi: 10.3837/tiis.2020.06.001 – ident: CR10 – volume: 41 start-page: 3879 issue: 8 year: 2014 end-page: 3900 ident: CR29 article-title: Hybrid recommendation approaches for multi-criteria collaborative filtering publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.12.023 – ident: CR33 – volume: 78 start-page: 19322 issue: 17 year: 2022 end-page: 19345 ident: CR2 article-title: Leveraging side information as adjusting embedding to improve user representation for recommendations publication-title: J Supercomput doi: 10.1007/s11227-022-04635-9 – volume: 41 start-page: 7776 issue: 17 year: 2014 end-page: 7788 ident: CR44 article-title: A semantic approach to improve neighborhood formation in collaborative recommender systems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.06.038 – volume: 20 start-page: 342 issue: 3 year: 2010 end-page: 365 ident: CR46 article-title: BizSeeker: a hybrid semantic recommendation system for personalized government-to-business e-services publication-title: Internet Res doi: 10.1108/10662241011050740 – ident: CR40 – ident: CR63 – ident: CR27 – ident: CR23 – volume: 30 start-page: 778 year: 2015 end-page: 791 ident: CR35 article-title: REFORE: a recommender system for researchers based on bibliometrics publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.02.024 – year: 2018 ident: CR13 publication-title: A collaborative filtering approach for movies recommendation based on user clustering and item clustering doi: 10.1007/978-981-13-1813-9_19 – ident: CR69 – volume: 673 start-page: 677 year: 2018 end-page: 686 ident: CR9 article-title: Movie recommendation system: hybrid information filtering system publication-title: Adv Intell Syst Comput doi: 10.1007/978-981-10-7245-1_66 – volume: 43 start-page: 614 year: 2015 end-page: 632 ident: CR56 article-title: Missing data imputation by k nearest neighbours based on grey relational structure and mutual information publication-title: Appl Intell doi: 10.1007/s10489-015-0666-x – ident: CR48 – ident: CR73 – volume: 24 start-page: 812 year: 2012 end-page: 816 ident: CR28 article-title: A personalized collaborative recommendation approach based on clustering of customers publication-title: Phys Procedia doi: 10.1016/j.phpro.2012.02.121 – ident: CR38 – ident: CR52 – ident: CR31 – volume: 78 start-page: 5203 issue: 4 year: 2022 end-page: 5220 ident: CR5 article-title: A multi-label ensemble predicting model to service recommendation from social media contents publication-title: J Supercomput doi: 10.1007/s11227-021-04087-7 – volume: 23 start-page: 2259 year: 2020 end-page: 2279 ident: CR39 article-title: Learning social representations with deep autoencoder for recommender system publication-title: World Wide Web doi: 10.1007/s11280-020-00793-z – volume: 2009 start-page: 4 year: 2009 ident: CR17 article-title: A survey of collaborative filtering techniques publication-title: Advances in artificial intelligence doi: 10.1155/2009/421425 – ident: CR55 – volume: 12 start-page: 331 issue: 4 year: 2002 end-page: 370 ident: CR36 article-title: Hybrid recommender systems: survey and experiments publication-title: User Model User-Adap Inter doi: 10.1023/A:1021240730564 – ident: CR59 – ident: CR76 – volume: 42 year: 2020 ident: CR81 article-title: A hybrid context-aware approach for e-tourism package recommendation based on asymmetric similarity measurement and sequential pattern mining publication-title: Electron Commer Res Appl doi: 10.1016/j.elerap.2020.100978 – ident: CR41 – ident: CR62 – volume: 78 start-page: 1944 issue: 2 year: 2022 end-page: 1960 ident: CR1 article-title: An intelligent web service group-based recommendation system for long-term composition publication-title: J Supercomput doi: 10.1007/s11227-021-03930-1 – ident: CR20 – volume: 55 start-page: 603 year: 2015 end-page: 612 ident: CR45 article-title: Integrating ontologies and fuzzy logic to represent user-trustworthiness in recommender systems publication-title: Proc Comp Sci doi: 10.1016/j.procs.2015.07.050 – volume: 80 start-page: 28647 issue: 19 year: 2021 ident: 5950_CR14 publication-title: Multim Tools Appl doi: 10.1007/s11042-021-10965-2 – volume: 40 start-page: 132 year: 2016 ident: 5950_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.11.026 – volume: 41 start-page: 391 year: 1990 ident: 5950_CR57 publication-title: J Am Soc Inform Sci doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 – ident: 5950_CR63 doi: 10.1109/ICASSP40776.2020.9054480 – volume: 14 start-page: 2310 year: 2020 ident: 5950_CR37 publication-title: KSII Trans Internet Inf Syst doi: 10.3837/tiis.2020.06.001 – volume: 30 start-page: 778 year: 2015 ident: 5950_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.02.024 – volume: 78 start-page: 9377 issue: 7 year: 2022 ident: 5950_CR3 publication-title: J Supercomput doi: 10.1007/s11227-021-04213-5 – volume-title: A collaborative filtering approach for movies recommendation based on user clustering and item clustering year: 2018 ident: 5950_CR13 doi: 10.1007/978-981-13-1813-9_19 – ident: 5950_CR53 – ident: 5950_CR47 doi: 10.1007/978-3-211-93971-0_12 – ident: 5950_CR77 doi: 10.1016/j.eswa.2017.01.060 – year: 2019 ident: 5950_CR6 publication-title: Sensors doi: 10.4108/eai.19-10-2018.2282541 – ident: 5950_CR21 – ident: 5950_CR22 doi: 10.1016/j.knosys.2013.03.012 – volume: 26 start-page: 633 issue: 1 year: 2013 ident: 5950_CR24 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2012.02.014 – volume: 55 start-page: 603 year: 2015 ident: 5950_CR45 publication-title: Proc Comp Sci doi: 10.1016/j.procs.2015.07.050 – ident: 5950_CR40 – volume: 10 start-page: 1377 issue: 8 year: 2016 ident: 5950_CR65 publication-title: World Acad Sci Eng Technol Int J Comp Electr Automat Control Inform Eng – ident: 5950_CR23 doi: 10.3233/JIFS-191225 – year: 2014 ident: 5950_CR75 publication-title: Mob Netw Appl doi: 10.1007/s11036-014-0544-5 – ident: 5950_CR69 doi: 10.1109/MIS.2007.58 – volume: 43 start-page: 614 year: 2015 ident: 5950_CR56 publication-title: Appl Intell doi: 10.1007/s10489-015-0666-x – ident: 5950_CR73 doi: 10.1016/j.tele.2017.08.008 – volume: 673 start-page: 677 year: 2018 ident: 5950_CR9 publication-title: Adv Intell Syst Comput doi: 10.1007/978-981-10-7245-1_66 – start-page: 635 volume-title: RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22–26, 2020 year: 2020 ident: 5950_CR15 – volume: 2022 start-page: 208 year: 2022 ident: 5950_CR4 publication-title: KDIR – volume: 24 start-page: 812 year: 2012 ident: 5950_CR28 publication-title: Phys Procedia doi: 10.1016/j.phpro.2012.02.121 – ident: 5950_CR11 doi: 10.1145/3380688.3380712 – volume: 60 start-page: 82 year: 2014 ident: 5950_CR30 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.01.006 – volume: 42 start-page: 30 issue: 8 year: 2009 ident: 5950_CR54 publication-title: Computer doi: 10.1109/MC.2009.263 – ident: 5950_CR71 doi: 10.1109/MIC.2003.1167344 – ident: 5950_CR38 doi: 10.1007/s11704-019-8123-3 – ident: 5950_CR61 doi: 10.1109/HIS.2008.25 – ident: 5950_CR10 doi: 10.1007/978-3-030-15032-7_75 – volume: 2 start-page: 22 year: 2019 ident: 5950_CR12 publication-title: J Oper Strateg Plan doi: 10.1177/2516600x19848956 – ident: 5950_CR49 – ident: 5950_CR66 – volume: 2009 start-page: 4 year: 2009 ident: 5950_CR17 publication-title: Advances in artificial intelligence doi: 10.1155/2009/421425 – volume: 5 start-page: 745 issue: 7 year: 2010 ident: 5950_CR25 publication-title: J Softw doi: 10.4304/jsw.5.7.745-752 – ident: 5950_CR33 doi: 10.1145/2043932.2043950 – year: 2015 ident: 5950_CR78 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.03.006 – ident: 5950_CR72 doi: 10.1016/j.knosys.2015.03.006 – volume: 78 start-page: 1944 issue: 2 year: 2022 ident: 5950_CR1 publication-title: J Supercomput doi: 10.1007/s11227-021-03930-1 – ident: 5950_CR67 doi: 10.1155/2013/793091 – volume: 80 start-page: 7805 issue: 5 year: 2021 ident: 5950_CR7 publication-title: Multim Tools Appl doi: 10.1007/s11042-020-09949-5 – ident: 5950_CR59 – ident: 5950_CR76 doi: 10.1016/j.datak.2014.11.001 – volume: 42 year: 2020 ident: 5950_CR81 publication-title: Electron Commer Res Appl doi: 10.1016/j.elerap.2020.100978 – volume: 41 start-page: 7776 issue: 17 year: 2014 ident: 5950_CR44 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.06.038 – ident: 5950_CR48 doi: 10.1007/978-981-10-0557-2_109 – ident: 5950_CR51 – volume: 398 start-page: 485 year: 2020 ident: 5950_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.098 – ident: 5950_CR70 doi: 10.1145/1401890.1401944 – volume: 23 start-page: 2259 year: 2020 ident: 5950_CR39 publication-title: World Wide Web doi: 10.1007/s11280-020-00793-z – ident: 5950_CR18 doi: 10.1145/2645710.2645737 – ident: 5950_CR20 doi: 10.1016/j.knosys.2013.12.007 – volume: 367 start-page: 373 year: 2016 ident: 5950_CR60 publication-title: Inf Sci doi: 10.1016/j.ins.2016.06.012 – ident: 5950_CR62 doi: 10.1007/978-0-387-85820-3_3 – volume: 20 start-page: 342 issue: 3 year: 2010 ident: 5950_CR46 publication-title: Internet Res doi: 10.1108/10662241011050740 – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 5950_CR19 publication-title: ACM Comput Surv doi: 10.1145/3158369 – volume: 7 start-page: 22 issue: 4 year: 2007 ident: 5950_CR34 publication-title: ACM Trans Internet Technol (TOIT) doi: 10.1145/1278366.1278371 – volume: 41 start-page: 3879 issue: 8 year: 2014 ident: 5950_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.12.023 – ident: 5950_CR31 doi: 10.1145/2675744.2675759 – volume: 72 start-page: 37 year: 2017 ident: 5950_CR79 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2017.02.049 – volume: 18 start-page: 290 year: 2014 ident: 5950_CR32 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.09.004 – volume: 44 start-page: 390 issue: 1 year: 2022 ident: 5950_CR64 publication-title: IEEE Trans Pattern Anal Mach Intell – ident: 5950_CR74 doi: 10.1016/j.eswa.2017.09.058 – ident: 5950_CR52 doi: 10.1109/TIT.1982.1056489 – volume: 51 start-page: 506 year: 2021 ident: 5950_CR80 publication-title: Appl Intell doi: 10.1007/s10489-020-01806-0 – ident: 5950_CR16 – volume: 202 year: 2022 ident: 5950_CR82 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117079 – volume: 22 start-page: 101 issue: 1 year: 2010 ident: 5950_CR43 publication-title: Knowl Inf Syst doi: 10.1007/s10115-009-0200-8 – ident: 5950_CR58 doi: 10.5040/9798400660399 – volume: 78 start-page: 5203 issue: 4 year: 2022 ident: 5950_CR5 publication-title: J Supercomput doi: 10.1007/s11227-021-04087-7 – ident: 5950_CR50 doi: 10.3115/992133.992154 – ident: 5950_CR41 doi: 10.1007/978-3-540-92673-3 – ident: 5950_CR68 – ident: 5950_CR27 doi: 10.1016/j.eswa.2011.08.020 – ident: 5950_CR42 doi: 10.4018/978-1-59140-905-2 – volume: 12 start-page: 331 issue: 4 year: 2002 ident: 5950_CR36 publication-title: User Model User-Adap Inter doi: 10.1023/A:1021240730564 – ident: 5950_CR55 doi: 10.1007/978-3-540-72079-9_12 – volume: 78 start-page: 19322 issue: 17 year: 2022 ident: 5950_CR2 publication-title: J Supercomput doi: 10.1007/s11227-022-04635-9 |
| SSID | ssj0004373 |
| Score | 2.3695288 |
| Snippet | A recommender system is a model that automatically recommends some meaningful cases (such as clips/films/goods/items) to the clients/people/consumers/users... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13341 |
| SubjectTerms | Accuracy Algorithms Approximation Clustering Cold Collaboration Compilers Computer Science Feedback Filtration Interpreters Machine learning Ontology Processor Architectures Programming Languages Ratings Recommender systems Semantics Sparsity |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNLA0aZochx94kCE4ZLeSpAkOtk7WTXB_vUnaWhQV9FiahvBeXn7v5fX9HgDnhMcONRlGKsIEUasEEppppCgzVlvpjsNAmX-fDAZ8NBIPVVFYUf_tXqckw0ndFLvhKEqQwxTkXIK4h1brYCP2bDM-Rn98aqohSZlXFi4w4jGNqlKZ7-f4DEeNj_klLRrQ5rb9v3XugO3Ku4T9cjvsgjWT74F23bkBVoa8D6778PnN12rBwkydbMca-sh4Og2N5WBJ7ww9wmVwlkOZw3G4fHCPerL03ApuRQdgeHszvLpDVT8FpJ2hLZAxnm5PWKF5nFEtdWIxswRbQqzhtkczkykWcUUN50wbpRTpSZlJqymTCTkErXyWmyMADVYsMYKpRHJqKVeRZoIZSnoq5iZhHYBrqaa64hr3LS8macOS7KWUOimlQUrpqgMuPr55KZk2fh3drZWVVlZXpMT5by5AEhHugMtaOc3rn2c7_tvwE7AVBf36y5guaC3mS3MKNvXrYlzMz8JufAelpdqc priority: 102 providerName: Springer Nature |
| Title | A hybrid semantic recommender system based on an improved clustering |
| URI | https://link.springer.com/article/10.1007/s11227-024-05950-z https://www.proquest.com/docview/3256597921 |
| Volume | 80 |
| WOSCitedRecordID | wos001176417200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database ProQuest customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9ODFb3F-jBy8aXBt0jQ5iZ8IyhhTRLyUJk1wsHXqpuD-epM2tSi4i5dAaRtC3mfey_s9gAPCI2s1WYBlGBBMjRRYKKawpEwbZVKrDgvI_Nu40-GPj6LrA25jf62y0omFos5GysXIj4m1zdb5FWFw8vKKXdcol131LTTmYcEhlVk-Xzi77HR7dWUkKXPMwh6SeERDXzZTFs8FYRhja6OwdTGiNp7-NE21v_krRVpYnquV_655FZa9z4lOSyZZgzmdr8NK1c8BefHegItT9PzpKrjQWA_tjvcVcufl4bBoN4dK0Gfk7F6GRjlKc9QvQhL2UQ3eHeKCXf8m3F9d3p9fY99lASsrfhOstQPhE0YoHmVUpSo2ATMkMIQYzU2bZjqTLOSSas6Z0lJK0k7TLDWKsjQmW9DIR7neBqQDyWItmIxTTg3lMlRMME1JW0Zcx6wJQbW_ifII5K4RxiCpsZMdTRJLk6SgSTJtwuH3Py8l_sbMr_cqQiReFsdJTYUmHFWkrF__PdvO7Nl2YSksuMeFZPagMXl71_uwqD4m_fFby3NiC-ZvYtxyV0rv7NiNnuzYu3v4AuJA6Rs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB4FWoleSnmpgbT1oZyKRdb2eu0DQgiKEiVEPeTAzVp7bRGJbIAEEPyn_kfsfbACqdw49LjaXUvr-ebhmZ1vAH5SEXuvySOsSUQxc1piabjBmnHrjEu9OSwo84fJaCTOz-WfFvyte2HCb5W1TSwMdTYzIUe-T71v9sGvJNHh1TUOU6NCdbUeoVHCYmAf7v2RbX7QP_Hy3SXk9Pf4uIerqQLYeLgtsLWBdE46aUScMZOaxEXc0chR6qxwXZbZTHMiNLNCcGO11rSbplnqDONpQv2yS_CBUcGDQg0S3LRh0rKgLf2JTMSMVD06ZadeREiCvUPEPp6Ju_jxpR9sgttX9djCzZ2u_mcb9AU-V_E0OioVYA1aNl-H1XpWBapM1wacHKGLh9CdhuZ26tE0MSjkAqbTYpQeKgmtUfDpGZrlKM3RpEi3-EtzeRvYJPx2bcL4PT5lC5bzWW6_ArKR5omVXCepYI4JTQyX3DLa1bGwCW9DVItTmYpdPQz5uFQNL3SAgPIQUAUE1GMbfj2_c1Vyi7z5dKeWu6rszFw1Qm_DXo2c5va_V9t-e7UfsNIbnw3VsD8a7MAnUgA3pJ46sLy4ubXf4KO5W0zmN98LFUCg3hlRT8HIRE8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1yfOXjTYNukaXIU10VRFtFFvJUmTXBht8o-BPfXm_RhVVQQj6VpCDOZzkwm3zcAh4SH1msyH8vAJ5gaKbBQTGFJmTbKJPZ3mFPmX0edDn94EDcfUPz5bfeqJFlgGhxLUzY-eU7NSQ1884Mgwta_YBsehB6ezsIctZmMu9R1e3dfIyNJUWMWNkniIQ1K2Mz3c3x2TXW8-aVEmnue9vL_17wCS2XUiU6LbbIKMzpbg-WqowMqDXwdWqfo8dVhuNBID6zMewq5jHkwyBvOoYL2GTnPl6KnDCUZ6uWHEvZR9SeOc8GubgO67fPu2QUu-yxgZQ1wjLV2NHzCCMXDlKpERcZnhviGEKO58WiqU8kCLqnmnCktpSRekqSJUZQlEdmERvaU6S1A2pcs0oLJKOHUUC4DxQTTlHgy5DpiTfArCceq5CB3rTD6cc2e7KQUWynFuZTiaROO3r95Lhg4fh29WykuLq1xFBMb19nESQR-E44rRdWvf55t-2_DD2DhptWOry87VzuwGOSqduc1u9AYDyd6D-bVy7g3Gu7nm_QN5I7mZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+semantic+recommender+system+based+on+an+improved+clustering&rft.jtitle=The+Journal+of+supercomputing&rft.au=Bahrani%2C+Payam&rft.au=Minaei-Bidgoli%2C+Behrouz&rft.au=Parvin%2C+Hamid&rft.au=Mirzarezaee%2C+Mitra&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=9&rft.spage=13341&rft.epage=13385&rft_id=info:doi/10.1007%2Fs11227-024-05950-z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |