Early predictive model for breast cancer classification using blended ensemble learning

Breast cancer is one of the most common cancers among women’s worldwide, and it is a fact that most of the cases are discovered late. Several researchers have examined the prediction of breast cancer. Breast cancer poses a significant hazard to women. The deficiency of reliable predictive models rea...

Full description

Saved in:
Bibliographic Details
Published in:International journal of system assurance engineering and management Vol. 15; no. 1; pp. 188 - 197
Main Authors: Mahesh, T. R., Vinoth Kumar, V., Vivek, V., Karthick Raghunath, K. M., Sindhu Madhuri, G.
Format: Journal Article
Language:English
Published: New Delhi Springer India 01.01.2024
Springer Nature B.V
Subjects:
ISSN:0975-6809, 0976-4348
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Breast cancer is one of the most common cancers among women’s worldwide, and it is a fact that most of the cases are discovered late. Several researchers have examined the prediction of breast cancer. Breast cancer poses a significant hazard to women. The deficiency of reliable predictive models really makes it challenging for clinicians to devise a treatment strategy that will help patients live longer. An automatic illness detection system assists medical personnel in diagnosing disease and provides a reliable, efficient and quick reaction while also lowering the danger of death. A Blended ensemble learning, which is an innovative approach, has been utilized for the classification of breast cancer and this model performs effectively for the base classifier in the prediction analysis. The performance of five machine learning techniques, namely support vector machine, K-nearest neighbors, decision tree Classifier, random forests, and logistic regression, are used as base learners in blended ensemble model. All the incorporated base learners (individually) and the final outcome of the Ensemble Learning are being compared in this study against several performance metrics namely accuracy, recall, precision and f1-score for the early prediction of Breast Cancer. There is a 98.14 percent noticeable improvement with the Ensemble Learning model compared to the basic learners.
AbstractList Breast cancer is one of the most common cancers among women’s worldwide, and it is a fact that most of the cases are discovered late. Several researchers have examined the prediction of breast cancer. Breast cancer poses a significant hazard to women. The deficiency of reliable predictive models really makes it challenging for clinicians to devise a treatment strategy that will help patients live longer. An automatic illness detection system assists medical personnel in diagnosing disease and provides a reliable, efficient and quick reaction while also lowering the danger of death. A Blended ensemble learning, which is an innovative approach, has been utilized for the classification of breast cancer and this model performs effectively for the base classifier in the prediction analysis. The performance of five machine learning techniques, namely support vector machine, K-nearest neighbors, decision tree Classifier, random forests, and logistic regression, are used as base learners in blended ensemble model. All the incorporated base learners (individually) and the final outcome of the Ensemble Learning are being compared in this study against several performance metrics namely accuracy, recall, precision and f1-score for the early prediction of Breast Cancer. There is a 98.14 percent noticeable improvement with the Ensemble Learning model compared to the basic learners.
Author Karthick Raghunath, K. M.
Sindhu Madhuri, G.
Vivek, V.
Mahesh, T. R.
Vinoth Kumar, V.
Author_xml – sequence: 1
  givenname: T. R.
  orcidid: 0000-0002-5589-8992
  surname: Mahesh
  fullname: Mahesh, T. R.
  email: trmahesh.1978@gmail.com
  organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN University
– sequence: 2
  givenname: V.
  surname: Vinoth Kumar
  fullname: Vinoth Kumar, V.
  organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN University
– sequence: 3
  givenname: V.
  surname: Vivek
  fullname: Vivek, V.
  organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN University
– sequence: 4
  givenname: K. M.
  surname: Karthick Raghunath
  fullname: Karthick Raghunath, K. M.
  organization: Department of Computer Science and Engineering, MVJ College of Engineering
– sequence: 5
  givenname: G.
  surname: Sindhu Madhuri
  fullname: Sindhu Madhuri, G.
  organization: Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN University
BookMark eNp9UE1LAzEQDVLBWvsHPAU8Rycf-3WUUj-g4EXxGLLZSUnZZmuyFfrv3XYFwUNPM8O8N-_NuyaT0AUk5JbDPQcoHhKXvCoZCMGA51XO4IJMoSpypqQqJ6c-Y3kJ1RWZp7QBAC64Egqm5HNpYnugu4iNt73_RrrtGmyp6yKtI5rUU2uCxUhta1LyzlvT-y7QffJhTesWQ4MNxZBwOwy0RRPDsLkhl860Cee_dUY-npbvixe2ent-XTyumB089wxtU6Grlckzp6TNua0qV6pSGXR5XQi0rsmKgoMta1lnmTPl0bhsGgQQBcgZuRvv7mL3tcfU6023j2GQ1FJkqsqzAT2gyhFlY5dSRKet709_9NH4VnPQxyT1mKQektSnJPVRQPyj7qLfmng4T5IjKQ3gsMb45-oM6weVcIj3
CitedBy_id crossref_primary_10_3390_e25020245
crossref_primary_10_3390_ani15142033
crossref_primary_10_3390_app131910755
crossref_primary_10_1109_ACCESS_2024_3514662
crossref_primary_10_1109_ACCESS_2023_3253868
crossref_primary_10_3390_app13052885
crossref_primary_10_3390_electronics14091863
crossref_primary_10_3389_fgene_2024_1491602
crossref_primary_10_1155_2022_4451792
crossref_primary_10_1007_s41939_024_00662_6
crossref_primary_10_1007_s11227_025_07331_6
crossref_primary_10_1109_ACCESS_2024_3483095
crossref_primary_10_1186_s12880_024_01267_8
crossref_primary_10_1007_s12065_023_00824_4
crossref_primary_10_1088_1402_4896_ada18d
crossref_primary_10_1002_cjce_25594
crossref_primary_10_1109_ACCESS_2024_3480310
crossref_primary_10_1016_j_chemolab_2025_105399
crossref_primary_10_1109_ACCESS_2024_3523745
crossref_primary_10_1016_j_eij_2025_100785
crossref_primary_10_32628_IJSRST24113102
crossref_primary_10_1016_j_patcog_2025_111838
crossref_primary_10_3390_diagnostics13223452
crossref_primary_10_3390_diagnostics15050549
crossref_primary_10_1038_s41598_025_95311_4
crossref_primary_10_3390_info15100641
crossref_primary_10_1007_s00521_025_11287_2
crossref_primary_10_1016_j_genrep_2025_102325
crossref_primary_10_1016_j_imu_2024_101550
crossref_primary_10_1109_ACCESS_2024_3398198
Cites_doi 10.1109/FABS52071.2021.9702566
10.1016/j.artmed.2004.07.002
10.4081/jphr.2019.1677
10.1109/FABS52071.2021.9702699
10.1148/radiol.2017171920
10.1109/RTEICT52294.2021.9573604
10.1007/s12539-021-00418-7
10.18201/ijisae.2018648455
10.1111/j.1468-0394.2008.00480.x
10.1109/C2I451079.2020.9368911
10.1109/TIPTEKNO.2019.8895222
10.3390/jimaging6060039
10.1016/j.patrec.2019.03.022
10.4018/978-1-7998-6870-5.ch025
10.1145/3184066.3184080
10.1109/ICCCNT.2018.8493927
10.1016/j.procs.2016.04.224
10.1109/PIMRC.2017.8292668
10.1109/TKDE.2019.2891622
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2022
The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2022.
Copyright_xml – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2022
– notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2022.
DBID AAYXX
CITATION
DOI 10.1007/s13198-022-01696-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 0976-4348
EndPage 197
ExternalDocumentID 10_1007_s13198_022_01696_0
GeographicLocations United States--US
Wisconsin
GeographicLocations_xml – name: Wisconsin
– name: United States--US
GroupedDBID -EM
06D
0R~
203
29~
2JY
30V
406
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
CSCUP
DNIVK
DPUIP
EBLON
EIOEI
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O93
O9J
PT4
R89
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z5O
Z7R
Z7X
Z7Z
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-ecd9efb4a65f43c61c99f8484aef6b72ecfd57710c8b3b55fa814243dde002703
IEDL.DBID RSV
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000815777400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0975-6809
IngestDate Sun Sep 28 02:42:03 EDT 2025
Tue Nov 18 21:50:19 EST 2025
Sat Nov 29 04:20:37 EST 2025
Fri Feb 21 02:40:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Accuracy
Precision
Machine learning
Prediction
Breast cancer
Recall
Diagnosis
Detection system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ecd9efb4a65f43c61c99f8484aef6b72ecfd57710c8b3b55fa814243dde002703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5589-8992
PQID 3254965243
PQPubID 2043907
PageCount 10
ParticipantIDs proquest_journals_3254965243
crossref_citationtrail_10_1007_s13198_022_01696_0
crossref_primary_10_1007_s13198_022_01696_0
springer_journals_10_1007_s13198_022_01696_0
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationTitle International journal of system assurance engineering and management
PublicationTitleAbbrev Int J Syst Assur Eng Manag
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References DelenDAnalysis of cancer data: a data mining approachExpert Syst200926110011210.1111/j.1468-0394.2008.00480.x
KharyaSSoniSWeighted naive bayes classifier: a predictive model for breast cancer detectionInt J Comput Appl201613393237
Khan S, Islam N, Jan Z, Din IU, Rodrigues JJ (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit Lett 125:1–6
AslanMFCelikYSabanciKDurduABreast cancer diagnosis by different machine learning methods using blood analysis dataInt J Intell Syst Appl Eng20186428929310.18201/ijisae.2018648455
Telsang VA, nd Hegde K (2020) Breast cancer prediction analysis using machine learning algorithms. In: 2020 International conference on communication, computing and industry 4.0 (C2I4)
Sarveshvar MR, Gogoi A, Chaubey AK, Rohit S, Mahesh TR (2021a) Performance of different machine learning techniques for the prediction of heart diseases. In: 2021a International conference on forensics, analytics, big data, security (FABS), 2021, pp 1–4
DelenDWalkerGKadamAPredicting breast cancer survivability: a comparison of three data mining methodsArtif Intell Med200534211312710.1016/j.artmed.2004.07.002
Shrestha P, Singh A, Garg R, Sarraf I, Mahesh TR, Sindhu Madhuri G (2021c) Early stage detection of scoliosis using machine learning algorithms. In: 2021c International conference on forensics, analytics, big data, security (FABS), pp 1–4
AsriHMousannifHAl MoatassimeHNoelTUsing machine learning algorithms for breast cancer risk prediction and diagnosisProcedia Comput Sci2016831064106910.1016/j.procs.2016.04.224
Chauhan P, Swami A (2018) Breast cancer prediction using genetic algorithm based ensemble approach. In: 2018 9th international conference on computing, communication and networking technologies (ICCCNT), 2018, pp 1–8
ShahbazMFaruqSShaheenMMasoodSACancer diagnosis using data mining technologyLife Sci J201291308313
Shashikala HK, Mahesh TR, Vivek V, Sindhu MG, Saravanan C, Baig TZ (2021b) Early detection of spondylosis using point-based image processing techniques. In: 2021b International conference on recent trends on electronics, information, communication & technology (RTEICT), pp 655–659
Kumar D, Swathi P, Jahangir A, Sah NK, Vinothkumar V (2021) Intelligent speech processing technique for suspicious voice call identification using adaptive machine learning approach. In: Advances in computational intelligence and robotics, pp 372–380
Akbugday B (2019) 2019 Medical Technologies Congress (TIPTEKNO)—Izmir, Turkey (2019.10.3–2019.10.5)] 2019 Medical Technologies Congress (TIPTEKNO)—“Classification of Breast Cancer Data Using Machine Learning Algorithms”, pp 1–4
SalodZSinghYComparison of the performance of machine learning algorithms in breast cancer screening and detection: a protocolJ Public Health Res201983jphr-201910.4081/jphr.2019.1677
Breast Cancer (2018) Statistics, Approved by the Cancer.Net Editorial Board, 04/2017. [Online]. http://www.cancer.net/cancer-types/breast-cancer/statistics. Accessed 26 Aug 2018
GuptaMKChandraPA comprehensive survey of data miningInt J Inf Technol202012115
EltalhiSKutraniHBreast cancer diagnosis and prediction using machine learning and data mining techniques: a reviewIOSR J Dent Med Sci20191848594
GuptaPShaliniLAnalysis of machine learning techniques for breast cancer predictionInt J Eng Comput Sci20187052389123895
KelesMKBreast cancer prediction and detection using data mining classification algorithms: a comparative studyTehn Vjesn Tech Gazette2019261149155
Olson DL, Delen D (2008).“Advanced Data Mining Techniques”, Springer, 2008, ISBN: 978–3–540–76917–0.
HuangQChenYLiuLTaoDLiXOn combining bi-clustering mining and AdaBoost for breast tumor classificationIEEE Trans Knowl Data Eng202032472873810.1109/TKDE.2019.2891622
Li L, Wu Y, Ou Y, Li Q, Zhou Y, Chen D (2017) [IEEE 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC)—Montreal, QC, Canada (2017.10.8–2017.10.13)] 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC)—“Research on machine learning algorithms and feature extraction for time series”, pp 1–5
DhimanGVinoth KumarVKaurASharmaADON: deep learning and optimization-based framework for detection of novel coronavirus disease using x-ray imagesInterdiscip Sci Comput Life Sci20211326027210.1007/s12539-021-00418-7
Agarap AFM (2018) [ACM Press the 2nd international conference—Phu Quoc Island, Viet Nam (2018.02.02–2018.02.04)] Proceedings of the 2nd international conference on machine learning and soft computing—ICMLSC '18—“On breast cancer detection”, pp 5–9
AssiriASNazirSVelastinSABreast tumor classification using an ensemble machine learning methodJ Imaging2020663910.3390/jimaging6060039
ParkSHHanKMethodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and predictionRadiology201828617192010.1148/radiol.2017171920
D Delen (1696_CR8) 2009; 26
Z Salod (1696_CR22) 2019; 8
S Kharya (1696_CR17) 2016; 133
1696_CR26
MK Gupta (1696_CR13) 2020; 12
1696_CR27
H Asri (1696_CR4) 2016; 83
D Delen (1696_CR9) 2005; 34
G Dhiman (1696_CR10) 2021; 13
1696_CR23
1696_CR25
1696_CR20
Q Huang (1696_CR14) 2020; 32
AS Assiri (1696_CR5) 2020; 6
1696_CR19
1696_CR16
1696_CR18
P Gupta (1696_CR12) 2018; 7
M Shahbaz (1696_CR24) 2012; 9
1696_CR2
SH Park (1696_CR21) 2018; 286
1696_CR1
1696_CR7
1696_CR6
MK Keles (1696_CR15) 2019; 26
S Eltalhi (1696_CR11) 2019; 18
MF Aslan (1696_CR3) 2018; 6
References_xml – reference: DelenDAnalysis of cancer data: a data mining approachExpert Syst200926110011210.1111/j.1468-0394.2008.00480.x
– reference: Kumar D, Swathi P, Jahangir A, Sah NK, Vinothkumar V (2021) Intelligent speech processing technique for suspicious voice call identification using adaptive machine learning approach. In: Advances in computational intelligence and robotics, pp 372–380
– reference: Shashikala HK, Mahesh TR, Vivek V, Sindhu MG, Saravanan C, Baig TZ (2021b) Early detection of spondylosis using point-based image processing techniques. In: 2021b International conference on recent trends on electronics, information, communication & technology (RTEICT), pp 655–659
– reference: Sarveshvar MR, Gogoi A, Chaubey AK, Rohit S, Mahesh TR (2021a) Performance of different machine learning techniques for the prediction of heart diseases. In: 2021a International conference on forensics, analytics, big data, security (FABS), 2021, pp 1–4
– reference: Telsang VA, nd Hegde K (2020) Breast cancer prediction analysis using machine learning algorithms. In: 2020 International conference on communication, computing and industry 4.0 (C2I4)
– reference: Li L, Wu Y, Ou Y, Li Q, Zhou Y, Chen D (2017) [IEEE 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC)—Montreal, QC, Canada (2017.10.8–2017.10.13)] 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC)—“Research on machine learning algorithms and feature extraction for time series”, pp 1–5
– reference: ShahbazMFaruqSShaheenMMasoodSACancer diagnosis using data mining technologyLife Sci J201291308313
– reference: EltalhiSKutraniHBreast cancer diagnosis and prediction using machine learning and data mining techniques: a reviewIOSR J Dent Med Sci20191848594
– reference: KharyaSSoniSWeighted naive bayes classifier: a predictive model for breast cancer detectionInt J Comput Appl201613393237
– reference: AssiriASNazirSVelastinSABreast tumor classification using an ensemble machine learning methodJ Imaging2020663910.3390/jimaging6060039
– reference: Akbugday B (2019) 2019 Medical Technologies Congress (TIPTEKNO)—Izmir, Turkey (2019.10.3–2019.10.5)] 2019 Medical Technologies Congress (TIPTEKNO)—“Classification of Breast Cancer Data Using Machine Learning Algorithms”, pp 1–4
– reference: Olson DL, Delen D (2008).“Advanced Data Mining Techniques”, Springer, 2008, ISBN: 978–3–540–76917–0.
– reference: HuangQChenYLiuLTaoDLiXOn combining bi-clustering mining and AdaBoost for breast tumor classificationIEEE Trans Knowl Data Eng202032472873810.1109/TKDE.2019.2891622
– reference: ParkSHHanKMethodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and predictionRadiology201828617192010.1148/radiol.2017171920
– reference: DelenDWalkerGKadamAPredicting breast cancer survivability: a comparison of three data mining methodsArtif Intell Med200534211312710.1016/j.artmed.2004.07.002
– reference: Chauhan P, Swami A (2018) Breast cancer prediction using genetic algorithm based ensemble approach. In: 2018 9th international conference on computing, communication and networking technologies (ICCCNT), 2018, pp 1–8
– reference: KelesMKBreast cancer prediction and detection using data mining classification algorithms: a comparative studyTehn Vjesn Tech Gazette2019261149155
– reference: DhimanGVinoth KumarVKaurASharmaADON: deep learning and optimization-based framework for detection of novel coronavirus disease using x-ray imagesInterdiscip Sci Comput Life Sci20211326027210.1007/s12539-021-00418-7
– reference: GuptaPShaliniLAnalysis of machine learning techniques for breast cancer predictionInt J Eng Comput Sci20187052389123895
– reference: AslanMFCelikYSabanciKDurduABreast cancer diagnosis by different machine learning methods using blood analysis dataInt J Intell Syst Appl Eng20186428929310.18201/ijisae.2018648455
– reference: AsriHMousannifHAl MoatassimeHNoelTUsing machine learning algorithms for breast cancer risk prediction and diagnosisProcedia Comput Sci2016831064106910.1016/j.procs.2016.04.224
– reference: Khan S, Islam N, Jan Z, Din IU, Rodrigues JJ (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit Lett 125:1–6
– reference: Shrestha P, Singh A, Garg R, Sarraf I, Mahesh TR, Sindhu Madhuri G (2021c) Early stage detection of scoliosis using machine learning algorithms. In: 2021c International conference on forensics, analytics, big data, security (FABS), pp 1–4
– reference: Breast Cancer (2018) Statistics, Approved by the Cancer.Net Editorial Board, 04/2017. [Online]. http://www.cancer.net/cancer-types/breast-cancer/statistics. Accessed 26 Aug 2018
– reference: Agarap AFM (2018) [ACM Press the 2nd international conference—Phu Quoc Island, Viet Nam (2018.02.02–2018.02.04)] Proceedings of the 2nd international conference on machine learning and soft computing—ICMLSC '18—“On breast cancer detection”, pp 5–9
– reference: GuptaMKChandraPA comprehensive survey of data miningInt J Inf Technol202012115
– reference: SalodZSinghYComparison of the performance of machine learning algorithms in breast cancer screening and detection: a protocolJ Public Health Res201983jphr-201910.4081/jphr.2019.1677
– ident: 1696_CR23
  doi: 10.1109/FABS52071.2021.9702566
– volume: 34
  start-page: 113
  issue: 2
  year: 2005
  ident: 1696_CR9
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2004.07.002
– volume: 8
  start-page: jphr-2019
  issue: 3
  year: 2019
  ident: 1696_CR22
  publication-title: J Public Health Res
  doi: 10.4081/jphr.2019.1677
– ident: 1696_CR26
  doi: 10.1109/FABS52071.2021.9702699
– volume: 286
  start-page: 171920
  year: 2018
  ident: 1696_CR21
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– ident: 1696_CR25
  doi: 10.1109/RTEICT52294.2021.9573604
– ident: 1696_CR20
– volume: 13
  start-page: 260
  year: 2021
  ident: 1696_CR10
  publication-title: Interdiscip Sci Comput Life Sci
  doi: 10.1007/s12539-021-00418-7
– volume: 9
  start-page: 308
  issue: 1
  year: 2012
  ident: 1696_CR24
  publication-title: Life Sci J
– volume: 6
  start-page: 289
  issue: 4
  year: 2018
  ident: 1696_CR3
  publication-title: Int J Intell Syst Appl Eng
  doi: 10.18201/ijisae.2018648455
– volume: 26
  start-page: 100
  issue: 1
  year: 2009
  ident: 1696_CR8
  publication-title: Expert Syst
  doi: 10.1111/j.1468-0394.2008.00480.x
– ident: 1696_CR27
  doi: 10.1109/C2I451079.2020.9368911
– ident: 1696_CR2
  doi: 10.1109/TIPTEKNO.2019.8895222
– volume: 6
  start-page: 39
  issue: 6
  year: 2020
  ident: 1696_CR5
  publication-title: J Imaging
  doi: 10.3390/jimaging6060039
– ident: 1696_CR16
  doi: 10.1016/j.patrec.2019.03.022
– ident: 1696_CR18
  doi: 10.4018/978-1-7998-6870-5.ch025
– ident: 1696_CR1
  doi: 10.1145/3184066.3184080
– volume: 18
  start-page: 85
  issue: 4
  year: 2019
  ident: 1696_CR11
  publication-title: IOSR J Dent Med Sci
– ident: 1696_CR7
  doi: 10.1109/ICCCNT.2018.8493927
– volume: 26
  start-page: 149
  issue: 1
  year: 2019
  ident: 1696_CR15
  publication-title: Tehn Vjesn Tech Gazette
– ident: 1696_CR6
– volume: 83
  start-page: 1064
  year: 2016
  ident: 1696_CR4
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.04.224
– volume: 7
  start-page: 23891
  issue: 05
  year: 2018
  ident: 1696_CR12
  publication-title: Int J Eng Comput Sci
– volume: 133
  start-page: 32
  issue: 9
  year: 2016
  ident: 1696_CR17
  publication-title: Int J Comput Appl
– ident: 1696_CR19
  doi: 10.1109/PIMRC.2017.8292668
– volume: 12
  start-page: 1
  year: 2020
  ident: 1696_CR13
  publication-title: Int J Inf Technol
– volume: 32
  start-page: 728
  issue: 4
  year: 2020
  ident: 1696_CR14
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2891622
SSID ssj0001214240
Score 2.4639223
Snippet Breast cancer is one of the most common cancers among women’s worldwide, and it is a fact that most of the cases are discovered late. Several researchers have...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 188
SubjectTerms Accuracy
Breast cancer
Cancer therapies
Classification
Data mining
Datasets
Decision trees
Disease
Engineering
Engineering Economics
Ensemble learning
Fuzzy sets
Genetic algorithms
Logistics
Machine learning
Mammography
Marketing
Medical diagnosis
Medical prognosis
Neural networks
Organization
Original Article
Patients
Performance measurement
Prediction models
Quality Control
Reliability
Safety and Risk
Support vector machines
Womens health
Title Early predictive model for breast cancer classification using blended ensemble learning
URI https://link.springer.com/article/10.1007/s13198-022-01696-0
https://www.proquest.com/docview/3254965243
Volume 15
WOSCitedRecordID wos000815777400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 0976-4348
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001214240
  issn: 0975-6809
  databaseCode: RSV
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAGzEYKAduUKlb0yQ9IsTEaUI8d6uaNJmQxpi6wu_Hzlo6ECCBeoqapJHtJrZjfwY4ocxkI2QY5B3nAu6EC3Qk48Am-EhpCD_GF5uQ_b4aDJLrKilsWke711eSfqdukt1QWlRA0eeEIIJ28CIs43GnqGDDze3DnGeFsre8cyXBrwoVJlW2zPfTfD6RGjXzy82oP3B6G_9b6iasVwomO59JxBYs2PE2rM3BDu7Ao0c1ZpOCLmlou2O-Hg5D_ZVpClIvmSFhKJgh3ZqCiTz_GAXJD5keebc5QwPYPmODVZUnhrtw37u8u7gKqgILgcEFloE1eWKd5pmIHY-M6JgkcYornlkntOxa4_JYog5ilI50HLtMEWkj3BLJnA2jPVgav4ztPrCISyE4sgMHcZ7pLHQ6y5XNuzLPney2oFMTOTUV-jgVwRilDW4yES1FoqWeaGnYgtOPMZMZ9savvds179LqP5ymEdm_IsY1t-Cs5lXz-ufZDv7W_RBWu6jtzHwzbVgqi1d7BCvmrXyaFsdePt8BhFne7Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqDv8Xp1Dz4poWuTZP2UcQxcQ7RqXsrTZoMYc7RVf9-c1lrp6ig9Kk0acPlmnx3ufsO4BgzkyXjrpM2tXaoZtoRPg8cFZmLc4n8MbbYBO92w34_uimSwiZltHt5JGlX6irZzWhL6GD0OTKIGDt4Hhao2bGQMf_27mHGs4LZW9a5EpmvstCNimyZ71_zeUeqYOaXk1G74bTW_jfUdVgtACY5m2rEBsyp0SaszNAObsGjZTUm4wwPaXC5I7YeDjH4lQgMUs-JRGXIiERsjcFEdv4IBskPiBhatzkxBrB6NjekqDwx2Ib71kXvvO0UBRYcaQaYO0qmkdKCJizQ1JesKaNIhzSkidJMcE9JnQbcYBAZCl8EgU5CFK1vlkQ0Z11_B2qjl5HaBeJTzhg16MN0ojQRiatFkoYq9Xiaau7VoVkKOZYF-zgWwRjGFW8yCi02Qout0GK3DicffcZT7o1fWzfKuYuL_3AS-2j_ssCMuQ6n5VxVj39-297fmh_BUrt33Yk7l92rfVj2DPKZ-mkaUMuzV3UAi_Itf5pkh1ZX3wEAV-HR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0ah5802K3pkn7KOpQlDHwa2-lSZMhzDq66t9vLm3tFBVE-lSahONyTe7zdwCHWJksGXedpK21QzXTjvC476jQPJxLxI-xzSZ4rxcMBmF_qorfZrtXIcmipgFRmtL8ZJzok7rwzUhO4GAmOqKJGJt4FuYoJtKjvX77MOVlwUou62gJDQUscMOycub7ZT7fTrXK-SVKai-f7sr_yV6F5VLxJKeFpKzBjErXYWkKjnADHi3aMRlnGLzBY5DYPjnE6LVEYPJ6TiQKSUYk6tyYZGT3lWDy_JCIkXWnE2MYq2fzQsqOFMNNuO9e3J1dOmXjBUcaAnNHySRUWtCY-Zp6krVlGOqABjRWmgneUVInPje6iQyEJ3xfxwGy2TNHJZq5rrcFjfQlVdtAPMoZo0YrMZMojUXsahEngUo6PEk07zShXTE8kiUqOTbHGEU1njIyLTJMiyzTIrcJRx9zxgUmx6-jW9U-RuX_OYk8tIuZb2huwnG1b_Xnn1fb-dvwA1jon3ejm6ve9S4sdoxCVLhvWtDIs1e1B_PyLX-aZPtWbN8BkALqtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+predictive+model+for+breast+cancer+classification+using+blended+ensemble+learning&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Mahesh%2C+T.+R&rft.au=Vinoth+Kumar%2C+V&rft.au=Vivek%2C+V&rft.au=Karthick+Raghunath%2C+K.+M&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=15&rft.issue=1&rft.spage=188&rft.epage=197&rft_id=info:doi/10.1007%2Fs13198-022-01696-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon