Auxiliary Variable-Based Identification Algorithms for Uncertain-Input Models

This study presents two auxiliary variable-based identification algorithms for uncertain-input models. The auxiliary variable-based least squares algorithm can obtain unbiased parameter estimates by introducing suitable auxiliary variable vectors. Furthermore, an auxiliary variable-based recursive l...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Circuits, systems, and signal processing Ročník 39; číslo 7; s. 3389 - 3404
Hlavní autoři: Chen, Jing, Zhu, Quanmin, Chandra, Budi, Pu, Yan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2020
Springer Nature B.V
Témata:
ISSN:0278-081X, 1531-5878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study presents two auxiliary variable-based identification algorithms for uncertain-input models. The auxiliary variable-based least squares algorithm can obtain unbiased parameter estimates by introducing suitable auxiliary variable vectors. Furthermore, an auxiliary variable-based recursive least squares algorithm is proposed to reduce the computational efforts. To validate the framework and algorithms developed, it has conducted a series of bench tests with computational experiments. The simulated numerical results/plots are consistent with the analytically derived results in terms of the feasibility and effectiveness of the proposed procedure.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-019-01320-w