Unique Response Roman Domination: Complexity and Algorithms

A function f : V ( G ) → { 0 , 1 , 2 } is called a Roman dominating function on G = ( V ( G ) , E ( G ) ) if for every vertex v with f ( v ) = 0 , there exists a vertex u ∈ N G ( v ) such that f ( u ) = 2 . A function f : V ( G ) → { 0 , 1 , 2 } induces an ordered partition ( V 0 , V 1 , V 2 ) of V...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 85; no. 12; pp. 3889 - 3927
Main Authors: Banerjee, Sumanta, Chaudhary, Juhi, Pradhan, Dinabandhu
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2023
Springer Nature B.V
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A function f : V ( G ) → { 0 , 1 , 2 } is called a Roman dominating function on G = ( V ( G ) , E ( G ) ) if for every vertex v with f ( v ) = 0 , there exists a vertex u ∈ N G ( v ) such that f ( u ) = 2 . A function f : V ( G ) → { 0 , 1 , 2 } induces an ordered partition ( V 0 , V 1 , V 2 ) of V ( G ), where V i = { v ∈ V ( G ) : f ( v ) = i } for i ∈ { 0 , 1 , 2 } . A function f : V ( G ) → { 0 , 1 , 2 } with ordered partition ( V 0 , V 1 , V 2 ) is called a unique response Roman function if for every vertex v with f ( v ) = 0 , | N G ( v ) ∩ V 2 | ≤ 1 , and for every vertex v with f ( v ) = 1 or 2, | N G ( v ) ∩ V 2 | = 0 . A function f : V ( G ) → { 0 , 1 , 2 } is called a unique response Roman dominating function (URRDF) on G if it is a unique response Roman function as well as a Roman dominating function on G . The weight of a unique response Roman dominating function f is the sum f ( V ( G ) ) = ∑ v ∈ V ( G ) f ( v ) , and the minimum weight of a unique response Roman dominating function on G is called the unique response Roman domination number of G and is denoted by u R ( G ) . Given a graph G , the Min-URRDF problem asks to find a unique response Roman dominating function of minimum weight on G . In this paper, we study the algorithmic aspects of Min-URRDF . We show that the decision version of Min-URRDF remains NP-complete for chordal graphs and bipartite graphs. We show that for a given graph with n vertices, Min-URRDF cannot be approximated within a ratio of n 1 - ε for any ε > 0 unless P = NP . We also show that Min-URRDF can be approximated within a factor of Δ + 1 for graphs having maximum degree Δ . On the positive side, we design a linear-time algorithm to solve Min-URRDF for distance-hereditary graphs. Also, we show that Min-URRDF is polynomial-time solvable for interval graphs, and strengthen the result by showing that Min-URRDF can be solved in linear-time for proper interval graphs, a proper subfamily of interval graphs.
AbstractList A function f : V ( G ) → { 0 , 1 , 2 } is called a Roman dominating function on G = ( V ( G ) , E ( G ) ) if for every vertex v with f ( v ) = 0 , there exists a vertex u ∈ N G ( v ) such that f ( u ) = 2 . A function f : V ( G ) → { 0 , 1 , 2 } induces an ordered partition ( V 0 , V 1 , V 2 ) of V ( G ), where V i = { v ∈ V ( G ) : f ( v ) = i } for i ∈ { 0 , 1 , 2 } . A function f : V ( G ) → { 0 , 1 , 2 } with ordered partition ( V 0 , V 1 , V 2 ) is called a unique response Roman function if for every vertex v with f ( v ) = 0 , | N G ( v ) ∩ V 2 | ≤ 1 , and for every vertex v with f ( v ) = 1 or 2, | N G ( v ) ∩ V 2 | = 0 . A function f : V ( G ) → { 0 , 1 , 2 } is called a unique response Roman dominating function (URRDF) on G if it is a unique response Roman function as well as a Roman dominating function on G . The weight of a unique response Roman dominating function f is the sum f ( V ( G ) ) = ∑ v ∈ V ( G ) f ( v ) , and the minimum weight of a unique response Roman dominating function on G is called the unique response Roman domination number of G and is denoted by u R ( G ) . Given a graph G , the Min-URRDF problem asks to find a unique response Roman dominating function of minimum weight on G . In this paper, we study the algorithmic aspects of Min-URRDF . We show that the decision version of Min-URRDF remains NP-complete for chordal graphs and bipartite graphs. We show that for a given graph with n vertices, Min-URRDF cannot be approximated within a ratio of n 1 - ε for any ε > 0 unless P = NP . We also show that Min-URRDF can be approximated within a factor of Δ + 1 for graphs having maximum degree Δ . On the positive side, we design a linear-time algorithm to solve Min-URRDF for distance-hereditary graphs. Also, we show that Min-URRDF is polynomial-time solvable for interval graphs, and strengthen the result by showing that Min-URRDF can be solved in linear-time for proper interval graphs, a proper subfamily of interval graphs.
A function f:V(G)→{0,1,2} is called a Roman dominating function on G=(V(G),E(G)) if for every vertex v with f(v)=0, there exists a vertex u∈NG(v) such that f(u)=2. A function f:V(G)→{0,1,2} induces an ordered partition (V0,V1,V2) of V(G), where Vi={v∈V(G):f(v)=i} for i∈{0,1,2}. A function f:V(G)→{0,1,2} with ordered partition (V0,V1,V2) is called a unique response Roman function if for every vertex v with f(v)=0, |NG(v)∩V2|≤1, and for every vertex v with f(v)=1 or 2, |NG(v)∩V2|=0. A function f:V(G)→{0,1,2} is called a unique response Roman dominating function (URRDF) on G if it is a unique response Roman function as well as a Roman dominating function on G. The weight of a unique response Roman dominating function f is the sum f(V(G))=∑v∈V(G)f(v), and the minimum weight of a unique response Roman dominating function on G is called the unique response Roman domination number of G and is denoted by uR(G). Given a graph G, the Min-URRDF problem asks to find a unique response Roman dominating function of minimum weight on G. In this paper, we study the algorithmic aspects of Min-URRDF. We show that the decision version of Min-URRDF remains NP-complete for chordal graphs and bipartite graphs. We show that for a given graph with n vertices, Min-URRDF cannot be approximated within a ratio of n1-ε for any ε>0 unless P=NP. We also show that Min-URRDF can be approximated within a factor of Δ+1 for graphs having maximum degree Δ. On the positive side, we design a linear-time algorithm to solve Min-URRDF for distance-hereditary graphs. Also, we show that Min-URRDF is polynomial-time solvable for interval graphs, and strengthen the result by showing that Min-URRDF can be solved in linear-time for proper interval graphs, a proper subfamily of interval graphs.
Author Chaudhary, Juhi
Banerjee, Sumanta
Pradhan, Dinabandhu
Author_xml – sequence: 1
  givenname: Sumanta
  surname: Banerjee
  fullname: Banerjee, Sumanta
  organization: Department of Mathematics and Computing, Indian Institute of Technology (ISM)
– sequence: 2
  givenname: Juhi
  surname: Chaudhary
  fullname: Chaudhary, Juhi
  organization: Department of Computer Science, Ben-Gurion University of the Negev
– sequence: 3
  givenname: Dinabandhu
  surname: Pradhan
  fullname: Pradhan, Dinabandhu
  email: dina@iitism.ac.in
  organization: Department of Mathematics and Computing, Indian Institute of Technology (ISM)
BookMark eNp9kE9LAzEQxYNUsFW_gKcFz6szm90m0VOpf6EgiD2H7G62puwmNdmC_famXUHw0MMwc3i_mTdvQkbWWU3IFcINArDbAJAXNIUsFiLDlJ2QMeY0S6HIcUTGgIyn-RTZGZmEsAbAjInpmNwvrfna6uRdh42zIQ6uUzZ5cJ2xqjfO3iVz121a_W36XaJsnczalfOm_-zCBTltVBv05W8_J8unx4_5S7p4e36dzxZpRVH0qRYZNqKChjOlBS2AK8BKcEpVoetoTKEGkXFeVroWCsqyLjRvRJOXrMhqRs_J9bB34130Gnq5dltv40kZKT6lWGQYVXxQVd6F4HUjK9MfXui9Mq1EkPuo5BCVjFHJQ1RyfyD7h2686ZTfHYfoAIUotivt_1wdoX4ARGJ9Dw
CitedBy_id crossref_primary_10_3390_a17120576
Cites_doi 10.1016/j.dam.2016.09.035
10.1007/s10878-012-9500-0
10.1016/0020-0190(84)90126-1
10.1016/j.dam.2016.03.017
10.1007/s00453-020-00705-7
10.1016/j.tcs.2019.08.017
10.1145/2591796.2591884
10.1016/j.dam.2021.08.020
10.1080/00029890.2000.12005243
10.1287/moor.4.3.233
10.1016/j.disc.2003.06.004
10.1016/j.dam.2019.01.038
10.1007/3-540-63890-3_37
10.1007/s12190-020-01345-4
10.1137/1.9780898719796
10.1016/j.dam.2022.09.017
10.1016/0020-0190(88)90091-9
10.1038/scientificamerican1299-136
10.1016/0196-6774(85)90001-X
10.1080/00207160.2017.1301437
10.1007/978-3-642-58412-1
10.1145/800157.805047
10.1002/net.1
10.1016/j.dam.2008.01.011
10.1016/j.ipl.2018.01.004
10.1016/j.disc.2007.03.020
10.7151/dmgt.2067
10.1016/j.dam.2011.03.013
10.1016/j.tcs.2022.02.006
10.1137/S0097539792238431
10.1016/S0166-218X(98)00060-2
10.1016/0166-218X(90)90131-U
10.1016/j.dam.2017.10.027
10.1016/S0020-0190(03)00298-9
10.1016/S0166-218X(97)00125-X
10.1137/0217032
10.1016/j.dam.2005.07.011
10.1016/j.dam.2015.11.013
10.1016/0304-3975(87)90067-3
10.1016/j.akcej.2020.01.005
10.1007/s10878-019-00457-3
10.1016/0095-8956(86)90043-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-023-01171-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 3927
ExternalDocumentID 10_1007_s00453_023_01171_7
GrantInformation_xml – fundername: SERB, India
  grantid: MTR/2018/000017
– fundername: European Research Council
  grantid: 101039913
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-e921f9c0f87ae93508a01c9833a5ed017a1e09288bced9a0bbd5e8f9f4b752d73
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001061895500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 06:36:06 EST 2025
Sat Nov 29 02:20:33 EST 2025
Tue Nov 18 21:39:54 EST 2025
Fri Feb 21 02:42:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Domination
Roman domination
Polynomial-time algorithm
Unique response Roman domination
Unique response Roman function
NP-completeness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-e921f9c0f87ae93508a01c9833a5ed017a1e09288bced9a0bbd5e8f9f4b752d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2888631521
PQPubID 2043795
PageCount 39
ParticipantIDs proquest_journals_2888631521
crossref_citationtrail_10_1007_s00453_023_01171_7
crossref_primary_10_1007_s00453_023_01171_7
springer_journals_10_1007_s00453_023_01171_7
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Liedloff, Kloks, Liu, Peng (CR35) 2008; 156
Bertossi (CR10) 1984; 19
Chang (CR13) 1998; 6
Chen, Lu (CR17) 2019; 39
Henning, Klostermeyer (CR29) 2017; 217
Lee, Chang (CR34) 2006; 154
D’Atri, Moscarini (CR21) 1988; 17
Ausiello, Protasi, Spaccamela, Gambosi, Crescenzi, Kann (CR4) 1999
Chellali, Haynes, Hedetniemi, McRae (CR16) 2016; 204
CR33
CR32
Falk, Thomas (CR23) 2001; 37
Hammer, Maffray (CR27) 1990; 27
Banerjee, Keil, Pradhan (CR8) 2019; 796
Banerjee, Henning, Pradhan (CR7) 2021; 391
Zhang, Li, Jiang, Shao (CR51) 2018; 134
Garey, Johnson (CR25) 1990
Ahangar, Chellali, Samodivkin (CR1) 2017; 94
Poureidi (CR40) 2022; 911
Yeh, Chang (CR49) 1998; 87
Panda, Das (CR39) 2003; 87
Brandstädt, Chepoi, Dargan (CR11) 1998; 82
Ahangar, Henning, Löwenstein, Zhao, Samodivkin (CR3) 2014; 27
CR45
Bandelt, Mulder (CR5) 1986; 41
Beeler, Haynes, Hedetniemi (CR9) 2016; 211
Pradhan, Banerjee, Liu (CR41) 2022; 319
Yue, Wei, Li, Liu (CR50) 2018; 338
Padamutham, Palagiri (CR37) 2020; 64
Haiko, Brandstädt (CR26) 1987; 53
ReVelle, Rosing (CR44) 2000; 107
Banerjee, Henning, Pradhan (CR6) 2020; 39
Padamutham, Palagiri (CR38) 2020; 17
CR15
CR14
CR12
Ahangar, Chellali, Sheikholeslami (CR2) 2020; 364
Targhi, Rad, Volkmann (CR48) 2011; 159
Chvatal (CR18) 1979; 4
Cockayne, Dreyer, Hedetniemi, Hedetniemi (CR19) 2004; 278
Rubalcaba, Slater (CR46) 2007; 307
Zhao, Li, Zhao, Zhang (CR52) 2018; 105
Haynes, Henning (CR28) 2019; 260
Rad, Liu (CR42) 2012; 54
CR22
Lin, Ku, Hsu (CR36) 2020; 82
Hsieh, Ho, Hsu, Ko, Chen (CR31) 2002; 15
CR20
Ramalingam, Rangan (CR43) 1988; 27
Stewart (CR47) 1999; 281
Farber, Keil (CR24) 1985; 6
Henning, Klostermeyer, MacGillivray (CR30) 2018; 236
S Banerjee (1171_CR6) 2020; 39
MR Garey (1171_CR25) 1990
EE Targhi (1171_CR48) 2011; 159
MA Henning (1171_CR29) 2017; 217
RR Rubalcaba (1171_CR46) 2007; 307
BS Panda (1171_CR39) 2003; 87
CS ReVelle (1171_CR44) 2000; 107
1171_CR32
1171_CR33
C Padamutham (1171_CR38) 2020; 17
HA Ahangar (1171_CR1) 2017; 94
MS Chang (1171_CR13) 1998; 6
V Chvatal (1171_CR18) 1979; 4
HA Ahangar (1171_CR3) 2014; 27
CC Lin (1171_CR36) 2020; 82
G Ramalingam (1171_CR43) 1988; 27
1171_CR20
M Haiko (1171_CR26) 1987; 53
M Liedloff (1171_CR35) 2008; 156
1171_CR22
PL Hammer (1171_CR27) 1990; 27
CM Lee (1171_CR34) 2006; 154
A Poureidi (1171_CR40) 2022; 911
A D’Atri (1171_CR21) 1988; 17
SY Hsieh (1171_CR31) 2002; 15
HG Yeh (1171_CR49) 1998; 87
I Stewart (1171_CR47) 1999; 281
H Chen (1171_CR17) 2019; 39
1171_CR12
J Yue (1171_CR50) 2018; 338
1171_CR14
N Falk (1171_CR23) 2001; 37
C Padamutham (1171_CR37) 2020; 64
1171_CR15
N Zhao (1171_CR52) 2018; 105
M Chellali (1171_CR16) 2016; 204
TW Haynes (1171_CR28) 2019; 260
NJ Rad (1171_CR42) 2012; 54
HA Ahangar (1171_CR2) 2020; 364
S Banerjee (1171_CR7) 2021; 391
X Zhang (1171_CR51) 2018; 134
RA Beeler (1171_CR9) 2016; 211
AA Bertossi (1171_CR10) 1984; 19
G Ausiello (1171_CR4) 1999
M Farber (1171_CR24) 1985; 6
S Banerjee (1171_CR8) 2019; 796
D Pradhan (1171_CR41) 2022; 319
EJ Cockayne (1171_CR19) 2004; 278
MA Henning (1171_CR30) 2018; 236
1171_CR45
A Brandstädt (1171_CR11) 1998; 82
HJ Bandelt (1171_CR5) 1986; 41
References_xml – ident: CR45
– volume: 41
  start-page: 182
  year: 1986
  end-page: 208
  ident: CR5
  article-title: Distance-hereditary graphs
  publication-title: J. Combin. Theory Ser. B
– ident: CR22
– volume: 236
  start-page: 235
  year: 2018
  end-page: 245
  ident: CR30
  article-title: Perfect Roman domination in trees
  publication-title: Discrete Appl. Math.
– volume: 911
  start-page: 70
  year: 2022
  end-page: 79
  ident: CR40
  article-title: Algorithm and hardness results in double Roman domination of graphs
  publication-title: Theor. Comput. Sci.
– volume: 391
  year: 2021
  ident: CR7
  article-title: Perfect Italian domination in cographs
  publication-title: Appl. Math. Comput.
– ident: CR12
– volume: 37
  start-page: 117
  year: 2001
  end-page: 128
  ident: CR23
  article-title: Homogeneous sets and domination: a linear time algorithm for distance-hereditary graphs
  publication-title: Networks
– volume: 211
  start-page: 23
  year: 2016
  end-page: 29
  ident: CR9
  article-title: Double Roman domination
  publication-title: Discrete Appl. Math.
– volume: 204
  start-page: 22
  year: 2016
  end-page: 28
  ident: CR16
  article-title: Roman -domination
  publication-title: Discrete Appl. Math.
– volume: 87
  start-page: 245
  year: 1998
  end-page: 253
  ident: CR49
  article-title: Weighted connected domination and Steiner trees in distance-hereditary graphs
  publication-title: Discrete Appl. Math.
– volume: 217
  start-page: 557
  year: 2017
  end-page: 564
  ident: CR29
  article-title: Italian domination in trees
  publication-title: Discrete Appl. Math.
– volume: 307
  start-page: 3194
  year: 2007
  end-page: 3200
  ident: CR46
  article-title: Roman dominating influence parameters
  publication-title: Discrete Math.
– volume: 338
  start-page: 669
  year: 2018
  end-page: 675
  ident: CR50
  article-title: On the double Roman domination of graphs
  publication-title: Appl. Math. Comput.
– volume: 17
  start-page: 521
  year: 1988
  end-page: 538
  ident: CR21
  article-title: Distance-hereditary graphs, steiner trees, and connected domination
  publication-title: SIAM J. Comput.
– ident: CR15
– volume: 39
  start-page: 90
  year: 2020
  end-page: 114
  ident: CR6
  article-title: Algorithmic results on double Roman domination in graphs
  publication-title: J. Comb. Optim.
– volume: 27
  start-page: 85
  year: 1990
  end-page: 99
  ident: CR27
  article-title: Completely separable graphs
  publication-title: Discrete Appl. Math.
– volume: 39
  start-page: 13
  year: 2019
  end-page: 21
  ident: CR17
  article-title: A Note on Roman -domination problem in graphs
  publication-title: Discuss. Math. Graph Theory
– volume: 64
  start-page: 89
  year: 2020
  end-page: 102
  ident: CR37
  article-title: Algorithmic aspects of Roman domination in graphs
  publication-title: J. Appl. Math. Comput.
– volume: 54
  start-page: 133
  year: 2012
  end-page: 140
  ident: CR42
  article-title: Trees with strong equality between the Roman domination number and the unique response Roman domination number
  publication-title: Australas. J. Comb.
– ident: CR32
– volume: 17
  start-page: 1081
  year: 2020
  end-page: 1086
  ident: CR38
  article-title: Complexity of Roman -domination and the double Roman domination in graphs
  publication-title: AKCE Int. J. Graphs Comb.
– volume: 319
  start-page: 271
  year: 2022
  end-page: 295
  ident: CR41
  article-title: Perfect Italian domination in graphs: Complexity and algorithms
  publication-title: Discrete Appl. Math.
– year: 1999
  ident: CR4
  publication-title: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties
– year: 1990
  ident: CR25
  publication-title: Computers and Intractability, A Guide to the Theory of NP-Completeness
– volume: 260
  start-page: 164
  year: 2019
  end-page: 177
  ident: CR28
  article-title: Perfect Italian domination in trees
  publication-title: Discrete Appl. Math.
– volume: 159
  start-page: 1110
  year: 2011
  end-page: 1117
  ident: CR48
  article-title: Unique response Roman domination in graphs
  publication-title: Discrete Appl. Math.
– volume: 15
  start-page: 488
  year: 2002
  end-page: 518
  ident: CR31
  article-title: Characterization of efficiently parallel solvable problems on distance-hereditary graphs
  publication-title: Discrete Math.
– volume: 105
  start-page: 165
  year: 2018
  end-page: 183
  ident: CR52
  article-title: The unique response Roman domination in trees
  publication-title: J. Combin. Math. Combin. Comput.
– volume: 156
  start-page: 3400
  year: 2008
  end-page: 3415
  ident: CR35
  article-title: Efficient algorithms for Roman domination on some classes of graphs
  publication-title: Discrete Appl. Math.
– volume: 87
  start-page: 153
  year: 2003
  end-page: 161
  ident: CR39
  article-title: A linear time recognition algorithm for proper interval graphs
  publication-title: Inf. Process. Lett.
– ident: CR14
– volume: 796
  start-page: 1
  year: 2019
  end-page: 21
  ident: CR8
  article-title: Perfect Roman domination in graphs
  publication-title: Theor. Comput. Sci.
– volume: 53
  start-page: 257
  year: 1987
  end-page: 265
  ident: CR26
  article-title: The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs
  publication-title: Theor. Comput. Sci.
– ident: CR33
– volume: 19
  start-page: 37
  year: 1984
  end-page: 40
  ident: CR10
  article-title: Dominating sets for split and bipartite graphs
  publication-title: Inf. Process. Lett.
– volume: 281
  start-page: 136
  year: 1999
  end-page: 138
  ident: CR47
  article-title: Defend the Roman empire!
  publication-title: Sci. Am.
– volume: 278
  start-page: 11
  year: 2004
  end-page: 22
  ident: CR19
  article-title: Roman domination in graphs
  publication-title: Discrete Math.
– volume: 134
  start-page: 31
  year: 2018
  end-page: 34
  ident: CR51
  article-title: Double Roman domination in trees
  publication-title: Inf. Process. Lett.
– volume: 82
  start-page: 43
  year: 1998
  end-page: 77
  ident: CR11
  article-title: The algorithmic use of hypertree structure and maximum neighborhood orderings
  publication-title: Discrete Appl. Math.
– volume: 4
  start-page: 233
  year: 1979
  end-page: 235
  ident: CR18
  article-title: A greedy heuristic for the set-covering problem
  publication-title: Math. Oper. Res.
– volume: 364
  year: 2020
  ident: CR2
  article-title: Outer independent double Roman domination
  publication-title: Appl. Math. Comput.
– volume: 154
  start-page: 525
  year: 2006
  end-page: 536
  ident: CR34
  article-title: Distance-hereditary graphs are clique-perfect
  publication-title: Discrete Appl. Math.
– volume: 6
  start-page: 1671
  year: 1998
  end-page: 1694
  ident: CR13
  article-title: Efficient algorithms for the domination problems on interval and circular-arc graphs
  publication-title: SIAM J. Comput.
– volume: 6
  start-page: 309
  year: 1985
  end-page: 321
  ident: CR24
  article-title: Domination in permutation graphs
  publication-title: J. Algorithms
– volume: 82
  start-page: 2809
  year: 2020
  end-page: 2840
  ident: CR36
  article-title: Paired-Domination Problem on Distance-Hereditary Graphs
  publication-title: Algorithmica
– volume: 94
  start-page: 2547
  year: 2017
  end-page: 2557
  ident: CR1
  article-title: Outer independent Roman dominating functions in graphs
  publication-title: Int. J. Comput. Math.
– volume: 27
  start-page: 271
  year: 1988
  end-page: 274
  ident: CR43
  article-title: A unified approach to domination problems on interval graphs
  publication-title: Inf. Process. Lett.
– volume: 27
  start-page: 241
  year: 2014
  end-page: 255
  ident: CR3
  article-title: Signed Roman domination in graphs
  publication-title: J. Comb. Optim.
– volume: 107
  start-page: 585
  year: 2000
  end-page: 594
  ident: CR44
  article-title: Defendens imperium romanum: a classical problem in military strategy
  publication-title: Am. Math. Monthly
– ident: CR20
– volume: 217
  start-page: 557
  year: 2017
  ident: 1171_CR29
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2016.09.035
– volume: 27
  start-page: 241
  year: 2014
  ident: 1171_CR3
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-012-9500-0
– volume: 19
  start-page: 37
  year: 1984
  ident: 1171_CR10
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(84)90126-1
– volume: 211
  start-page: 23
  year: 2016
  ident: 1171_CR9
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2016.03.017
– ident: 1171_CR33
– volume: 82
  start-page: 2809
  year: 2020
  ident: 1171_CR36
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00705-7
– volume: 796
  start-page: 1
  year: 2019
  ident: 1171_CR8
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2019.08.017
– ident: 1171_CR22
  doi: 10.1145/2591796.2591884
– volume: 319
  start-page: 271
  year: 2022
  ident: 1171_CR41
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2021.08.020
– volume: 107
  start-page: 585
  year: 2000
  ident: 1171_CR44
  publication-title: Am. Math. Monthly
  doi: 10.1080/00029890.2000.12005243
– volume: 338
  start-page: 669
  year: 2018
  ident: 1171_CR50
  publication-title: Appl. Math. Comput.
– volume: 4
  start-page: 233
  year: 1979
  ident: 1171_CR18
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.4.3.233
– volume: 278
  start-page: 11
  year: 2004
  ident: 1171_CR19
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2003.06.004
– volume: 54
  start-page: 133
  year: 2012
  ident: 1171_CR42
  publication-title: Australas. J. Comb.
– volume: 260
  start-page: 164
  year: 2019
  ident: 1171_CR28
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2019.01.038
– ident: 1171_CR14
  doi: 10.1007/3-540-63890-3_37
– ident: 1171_CR32
– volume: 64
  start-page: 89
  year: 2020
  ident: 1171_CR37
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-020-01345-4
– ident: 1171_CR12
  doi: 10.1137/1.9780898719796
– ident: 1171_CR15
  doi: 10.1016/j.dam.2022.09.017
– volume: 27
  start-page: 271
  year: 1988
  ident: 1171_CR43
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(88)90091-9
– volume: 281
  start-page: 136
  year: 1999
  ident: 1171_CR47
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1299-136
– volume: 6
  start-page: 309
  year: 1985
  ident: 1171_CR24
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(85)90001-X
– volume: 94
  start-page: 2547
  year: 2017
  ident: 1171_CR1
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2017.1301437
– volume-title: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties
  year: 1999
  ident: 1171_CR4
  doi: 10.1007/978-3-642-58412-1
– ident: 1171_CR20
  doi: 10.1145/800157.805047
– volume: 15
  start-page: 488
  year: 2002
  ident: 1171_CR31
  publication-title: Discrete Math.
– volume: 37
  start-page: 117
  year: 2001
  ident: 1171_CR23
  publication-title: Networks
  doi: 10.1002/net.1
– volume: 156
  start-page: 3400
  year: 2008
  ident: 1171_CR35
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2008.01.011
– volume: 134
  start-page: 31
  year: 2018
  ident: 1171_CR51
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2018.01.004
– volume: 307
  start-page: 3194
  year: 2007
  ident: 1171_CR46
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.03.020
– volume: 364
  year: 2020
  ident: 1171_CR2
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 13
  year: 2019
  ident: 1171_CR17
  publication-title: Discuss. Math. Graph Theory
  doi: 10.7151/dmgt.2067
– volume: 159
  start-page: 1110
  year: 2011
  ident: 1171_CR48
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2011.03.013
– volume: 911
  start-page: 70
  year: 2022
  ident: 1171_CR40
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2022.02.006
– volume: 6
  start-page: 1671
  year: 1998
  ident: 1171_CR13
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792238431
– volume: 105
  start-page: 165
  year: 2018
  ident: 1171_CR52
  publication-title: J. Combin. Math. Combin. Comput.
– volume-title: Computers and Intractability, A Guide to the Theory of NP-Completeness
  year: 1990
  ident: 1171_CR25
– volume: 87
  start-page: 245
  year: 1998
  ident: 1171_CR49
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(98)00060-2
– volume: 27
  start-page: 85
  year: 1990
  ident: 1171_CR27
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(90)90131-U
– volume: 236
  start-page: 235
  year: 2018
  ident: 1171_CR30
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2017.10.027
– volume: 87
  start-page: 153
  year: 2003
  ident: 1171_CR39
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(03)00298-9
– ident: 1171_CR45
– volume: 82
  start-page: 43
  year: 1998
  ident: 1171_CR11
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(97)00125-X
– volume: 17
  start-page: 521
  year: 1988
  ident: 1171_CR21
  publication-title: SIAM J. Comput.
  doi: 10.1137/0217032
– volume: 154
  start-page: 525
  year: 2006
  ident: 1171_CR34
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2005.07.011
– volume: 204
  start-page: 22
  year: 2016
  ident: 1171_CR16
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2015.11.013
– volume: 53
  start-page: 257
  year: 1987
  ident: 1171_CR26
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(87)90067-3
– volume: 17
  start-page: 1081
  year: 2020
  ident: 1171_CR38
  publication-title: AKCE Int. J. Graphs Comb.
  doi: 10.1016/j.akcej.2020.01.005
– volume: 39
  start-page: 90
  year: 2020
  ident: 1171_CR6
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-019-00457-3
– volume: 391
  year: 2021
  ident: 1171_CR7
  publication-title: Appl. Math. Comput.
– volume: 41
  start-page: 182
  year: 1986
  ident: 1171_CR5
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(86)90043-2
SSID ssj0012796
Score 2.3729377
Snippet A function f : V ( G ) → { 0 , 1 , 2 } is called a Roman dominating function on G = ( V ( G ) , E ( G ) ) if for every vertex v with f ( v ) = 0 , there exists...
A function f:V(G)→{0,1,2} is called a Roman dominating function on G=(V(G),E(G)) if for every vertex v with f(v)=0, there exists a vertex u∈NG(v) such that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3889
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Graphs
Mathematical functions
Mathematics of Computing
Minimum weight
Polynomials
Theory of Computation
Title Unique Response Roman Domination: Complexity and Algorithms
URI https://link.springer.com/article/10.1007/s00453-023-01171-7
https://www.proquest.com/docview/2888631521
Volume 85
WOSCitedRecordID wos001061895500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46PXhxfuJ0Sg7eNNA06ZLoafiBBxkynexW0jTVwdbKWgX_vUn6MRQV9FZoEtL3Tfo88H48ABwTQ-MNzPaQpixGNOESydgLUES0ATOtZJS4Jq63bDDg47G4q4rC8jrbvQ5Juj91U-xm2YeNOdr8H8wwYstgxcAdt4INw_vHJnbgM6fKZXXnETUAXZXKfL_GZzhacMwvYVGHNtft_-1zA6xX7BL2y-OwCZZ0ugXatXIDrC7yNjgfub6tcFhmyJqHbCZTeJnZxBjrqjNoJ9lmmcU7lGkM-9OnbD4pnmf5DhhdXz1c3KBKRgEpc78KpIWPE6G8hDOpBTGMTHpYCU6IDHRszCSx9oTPeaR0LKQXRXGgeSISGrHAjxnZBa00S_UegMywW_NJyriTUCqpWUN7VEtCCDYYiDsA19YMVdVj3EpdTMOmO7KzTmisEzrrhKwDTpo5L2WHjV9Hd2snhdVty0Ozd94jlol0wGntlMXrn1fb_9vwA7Bm1ebLbJYuaBXzV30IVtVbMcnnR-4UfgCafdOq
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqX3wTQNNky6pPg11TJxD5ia-lbRNdbC1slbB_96kv4aigr4VmoT0Lun3wd19B3BMFI1XMNtCkrIA0ZALJALTRh6RCsykL7wwE3HtsX6fPz46d0VRWFJmu5chyexPXRW7afahY446_wczjNgiLFGFWFoxf3D_UMUOLJZ15dJ95xFVAF2Uyny_xmc4mnPML2HRDG069f_tcx3WCnZptPPjsAELMtqEetm5wSgu8hacjzLdVmOQZ8iqh3gqIuMy1okx2lVnhp6kxTLTd0NEgdGePMWzcfo8TbZh1LkaXnRR0UYB-ep-pUg6Fg4d3ww5E9IhipEJE_sOJ0TYMlBmEliajsW558vAEabnBbbkoRNSj9lWwMgO1KI4krtgMMVu1Sf5yp2EUkHVGtKkUhBCsMJA3ABcWtP1C41x3epi4lbqyJl1XGUdN7OOyxpwUs15yRU2fh3dLJ3kFrctcdXeeYtoJtKA09Ip89c_r7b3t-FHsNId3vbc3nX_Zh9Wdef5PLOlCbV09ioPYNl_S8fJ7DA7kR-P2NaO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4psG2SZdUn4ZzKI4x1MneStqmOtjasVXB_96kX1NRQXwrNDnSuxz3K3f3O4BjomC8CrMNLCkLMA25wCIwbOwRqYKZ9IUXpiSuHdbt8sHA6X3o4k-r3YuUZNbToFmaouRsEoRnZeObRiI6_6hrgUxmYrYIS1QX0uv_9fvHMo9gsXRCl55Bj6kK1nnbzPcyPoemOd78kiJNI0-7-v8zr8NajjpRM7smG7Ago02oFhMdUO7gW3DRT_lc0V1WOase4rGIUCvWBTPahOdIb9IkmskbElGAmqOneDpMnsezbei3rx4ur3E-XgH7yu8SLB3LDB3fCDkT0iEKqQnD9B1OiLBloFQmTGk4FueeLwNHGJ4X2JKHTkg9ZlsBIztQieJI7gJiCvWqT_KVmQmlgioZ0qBSEEJMFRvNGpiFZl0_5x7XIzBGbsmanGrHVdpxU-24rAYn5Z5Jxrzx6-p6YTA398KZq87OG0QjlBqcFgaav_5Z2t7flh_BSq_Vdjs33dt9WNUD6bOClzpUkumLPIBl_zUZzqaH6eV8B0Tc33I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+Response+Roman+Domination%3A+Complexity+and+Algorithms&rft.jtitle=Algorithmica&rft.au=Banerjee%2C+Sumanta&rft.au=Chaudhary%2C+Juhi&rft.au=Pradhan%2C+Dinabandhu&rft.date=2023-12-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=85&rft.issue=12&rft.spage=3889&rft.epage=3927&rft_id=info:doi/10.1007%2Fs00453-023-01171-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_023_01171_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon