New structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems
In this paper, we study the Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems A x = b and obtain the structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems A x = b . The convergence and...
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 95; H. 3; S. 1309 - 1323 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.03.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we study the Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems
A
x
=
b
and obtain the structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems
A
x
=
b
. The convergence and computational cost of these iteration methods are discussed. Numerical examples are given to demonstrate the efficiency of structure-preserving algorithms of Gauss-Seidel iteration and successive over-relaxation iteration methods. As an application, we apply two kinds of structure-preserving iterative algorithms to solve elliptic biquaternion linear systems
A
x
=
b
. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-023-01609-7 |