New structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems
In this paper, we study the Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems A x = b and obtain the structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems A x = b . The convergence and...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 95; číslo 3; s. 1309 - 1323 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study the Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems
A
x
=
b
and obtain the structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems
A
x
=
b
. The convergence and computational cost of these iteration methods are discussed. Numerical examples are given to demonstrate the efficiency of structure-preserving algorithms of Gauss-Seidel iteration and successive over-relaxation iteration methods. As an application, we apply two kinds of structure-preserving iterative algorithms to solve elliptic biquaternion linear systems
A
x
=
b
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-023-01609-7 |