New structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems

In this paper, we study the Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems A x = b and obtain the structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems A x = b . The convergence and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 95; číslo 3; s. 1309 - 1323
Hlavní autoři: Ding, Wenxv, Liu, Zhihong, Li, Ying, Wei, Anli, Zhang, Mingcui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2024
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems A x = b and obtain the structure-preserving algorithms of Gauss-Seidel and successive over-relaxation iteration methods for quaternion linear systems A x = b . The convergence and computational cost of these iteration methods are discussed. Numerical examples are given to demonstrate the efficiency of structure-preserving algorithms of Gauss-Seidel iteration and successive over-relaxation iteration methods. As an application, we apply two kinds of structure-preserving iterative algorithms to solve elliptic biquaternion linear systems A x = b .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-023-01609-7