Quantitative results on a Halpern-type proximal point algorithm

We apply proof mining methods to analyse a result of Boikanyo and Moroşanu on the strong convergence of a Halpern-type proximal point algorithm. As a consequence, we obtain quantitative versions of this result, providing uniform effective rates of asymptotic regularity and metastability.

Uložené v:
Podrobná bibliografia
Vydané v:Computational optimization and applications Ročník 79; číslo 1; s. 101 - 125
Hlavní autori: Leuştean, Laurenţiu, Pinto, Pedro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2021
Springer Nature B.V
Predmet:
ISSN:0926-6003, 1573-2894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We apply proof mining methods to analyse a result of Boikanyo and Moroşanu on the strong convergence of a Halpern-type proximal point algorithm. As a consequence, we obtain quantitative versions of this result, providing uniform effective rates of asymptotic regularity and metastability.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-021-00263-w