Quantitative results on a Halpern-type proximal point algorithm

We apply proof mining methods to analyse a result of Boikanyo and Moroşanu on the strong convergence of a Halpern-type proximal point algorithm. As a consequence, we obtain quantitative versions of this result, providing uniform effective rates of asymptotic regularity and metastability.

Saved in:
Bibliographic Details
Published in:Computational optimization and applications Vol. 79; no. 1; pp. 101 - 125
Main Authors: Leuştean, Laurenţiu, Pinto, Pedro
Format: Journal Article
Language:English
Published: New York Springer US 01.05.2021
Springer Nature B.V
Subjects:
ISSN:0926-6003, 1573-2894
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We apply proof mining methods to analyse a result of Boikanyo and Moroşanu on the strong convergence of a Halpern-type proximal point algorithm. As a consequence, we obtain quantitative versions of this result, providing uniform effective rates of asymptotic regularity and metastability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-021-00263-w